
r)

RD 101 694

AUTHOR
TITLE

INSTITUTION
SPONS AGENCY
REPORT NO
PUB DATE
NOTE

EDRS PRICE
DESCRIPTORS

DOCUMENT RESUME

IR 001 544

Stellhorn, William Howard
A Specialized Computer for Information Retrieval.
Report No. 74-637.
Illinois Univ., Urbana. Dept. of Computer Science.
National Science Foundation, Washington, D.C.
UIUCDCS-R-74-637
Oct 74
117p.

HF-50.76 HC-55.70 PLUS POSTAGE
*Algorithms; *Computers; *Computer Storage tevices;
*Data Bases; Data Processing; Documentation;
Information Processing; *Information Retrieval;
*Information Storage; Information Systems; Seara
Strategies; Technological Advancement

ABSTRACT
Response time in large, inverted file document

retrieval systems is determined by time required to access files of
document identifiers on disk and process a Boolean search request. A
specialized computer system has been devised that can perform a
complicated sample search involving 70 terms and over 60,000 document
references 12 to 60 times faster than a conventional machine. Many
small searches can be processed concurrently with little effect on
system performance. The system can be realized with currently
available technology and has been tried in numerous simulations
involving various system configurations and other "actors. (SK)

BEST COPY AVAILABLE

Report No. UIUCDCS-R-74-637

A SPECIALIZED COMPUTER FOR INFORMATION RETRIEVAL
*

by

William Howard Stellhorn

October 1974

Department of Computer Science
University of Illinois at Urbana-Champaign

Urbana, Illinois 61801

U.S DEPARTMENT OP HEALTH.
EDUCATION t WELFARE
NATIONAL INSTITUTE OP

EDUCATION
THIS DOCUMENT HAS BEEN REPRO
DUCED EXACTLY AS RECEIVED FROM
THE PERSON UR ORGANIZATION ORIGIN
ATING it POINTS OF VIEW OR OPINIONS
STATED DO NOT NE.CESS Ru y REPRO
SENT OFFICIAL NATIONAL INSTITUTE OF
EDUCATION POSITION OR POLICY

*
This work was supported in part by the National Science Foundation under
Grant No. US NSF-W-36936 and was submitted in partial fulfillment of the
requirements for the degree of Doctor of Philosophy in Computer Science,

r<
October 1974.

1-4

2/2

BEST COPY AVAILABLE

A SPECIALIZED COMPUTER FOR INFORMATION RETRIEVAL

William Howard Stellhorn, Ph.D.
Department of Computer Science

University of Illinois at Urbana-Champaign, 1974

Response time in large, inverted file document retrieval systems

is determined primarily by the time required to access files of document

identifiers on disk and perform the processing associated with a Boolean

search request. This paper describes a specialized computer system capable

of performing these functions in hardware. Using this equipment, a com-

plicated sample search involving 70 terms and over 60,000 document ref-

erences can be performed from 12 to 60 times faster than with a conventional

machine, and many small searches can be processed concurrently with very

little effect upon system performance.

A detailed description of the system, which can be realized with

currently-available technology, is presented; and algorithms for controlling

the progress of a search are discussed. Results from numerous simulations

involving various system configurations and other factors are also reported.

4

iii

ACKNOWLEDGMENT

Several persons have contributed significantly to the success

of this project, and their help is gratefully acknowledged. Special thanks

are due to my advisor, Professor David J. Kuck, for his constant enthusi-

asm and continuing help and support.

Thanks, too, to officials at the National Library of Medicine,

especially Messrs. W. H. Caldwell and D. B. McCarn, for information con-

cerning the MEDLARS and MEDLINE systems.

Much of the test data reoorted here was obtained through the

efforts of Mr. B. J. Hurley in maintaining, modifying and running the

simulation program.

Finally, the financial support of the Department of Computer

S:ience and the typing and drafting services of Mrs. Vivian Alsip and

Messrs. S. Lind() and R. Bright have been invaluable.

iv

TAbLE OF CUNTENTS

Page

1. INTRODUCTION 1

1.1 Overview 1

1.2 Operational Environment 3

2. TERM COORDINATION HARDWARE 4

2.1 System Description 4
2.2 Example 8
2.3 Hardware Requirements 11

2.3.1 Merge Network 16
2.3.2 Coordination Network 21

2.3.2.1 General Description 21

2.3.2.2 Step 1 Processing. 24
2.3.2.3 Step 2 Processing. 27
2.3.2.4 Step 3 Processing 31

2.3.2.5 Merge and Coordination Control Requirements. 34
2.3.3 Data Memory 35
2.3.4 Disk File System 36
2.3.5 Control Computer 36

2.4 System Integration 37
2.5 Summary 48

3. BASIC ALGORITHMS 50

3.1 Sublist Sequencing 50
3.2 Intermediate Results 53
3.3 List Splitting 54
3.4 Special Requirements of OR, AND and NOT Processing . . . 54
3.5 Processing Algorithms cor the Experimental System 57

3.5.1 Overview 57
3.5.2 List Selection 57
3.5.3 Merge Initiation 58
3.5.4 File S Processing 59
3.5.5 Result Processing 59
3.5.6 Standard Parameters 60

3.6 Example 61

4. PERFORMANCE 66

4.1 Preliminaries 66
4.2 Monoprogrammed Results 73

V

Page

4.2.1 Basic Tests 73

4.2.2 Data Base Expansion 79

4.2.3 Discussion of Performance Curves 83

4.2.4 Other Parameters 87

4.2.4.1 Overlap 88

4.2.4.2 Buffering Delay 88

4.3 Multiprogrammed Results 91

4.4 Algorithmic Development '
96

4.5 Merge Activity 100

5. CONCLUSION 103

LIST OF REFERENCES 106

VITA 108

vi

LIST OF TABLES

Page

2.1 Processing Summary for Term Coordination Example 9

2.2 Design Parameters for Standard System 15

2.3 Merge Network Characteristics 19

2.4 Coordination Step 2 Control Signals for First Three Cycles
of Operation 29

2.5 Cumulative Timing for Hardware Cycle with 256 Parallel
Data Paths 41

2.6 Cumulative Timing for Hardware Cycle with 16 Parallel
Data Paths 42

3.1 Definition of Sample Search 62

3.2 Progress of Sample Search 63

4.1 Data for Long Search [15] 68

4.2 Data for Short Search [15] 70

4.3 Long Search Performance for Three Standard Systems 75

4.4 Speed Improvement Factors Relative to Conventional Processor. . 77

4.5 Elapsed Time for Short Sample Search 78

4.6 Variation of Processing t,ycle Length 90

5.1 Component Cost Estimates 104

vii

LIST OF FIGURES

Page

2.1 Hardware Configuration 5

2.2 Symbol for a Comparison Element 7

2.3 Logic Symbols and Device Characteristics 13

2.4 Logic Diagram for a Comparison Element 17

2.5 Merge Network Feedback Connections 20

2.6 Coordination Network Interconnections 23

2.7 Details of Coordination Steps 1 and 2 25

2.8 Coordination Step 2 Interconnections, Final Three Stages. . . . 28

2.9 Transfer Mechanism Between Coordination Steps 2 and 3 33

2.10 Timing Summary for Hardware Subsystems 39

2.11 Time Distribution for Hardware Activities in the Standard
System 43

2.12 Memory. Conflict Analysis 45

3.1 Definitions for Sublist Sequence Discussion 52

3.2 Processing Example: "OR" Eleven Terms 65

4.1 Basic Performance Analysis 74

4.2 Effects of Data Base Expansion 80

4.3 Comparison of Small and Large Systems with Expanded Data
Bases 82

4.4 Comparison of Large and Small System Performance with 4X
Data Base 84

4.5 Overlap Factor Variations 89

4.6 Average Search and Response Time Presentation 93

4.7 Multiprogrammed Results 94

4.8 Algorithm Development 97

4.9 Merge and Coordination Hardware Utilization 101

1

1. INTRODUCTION

1.1 Overview

During the last few years, the growth of on-line information

retrieval services has been rapid, and this expansion is expected to

continue on a major scale for a long time to come. As such a system grows

and prospers, two problems often arise. First, the data base tends to

grow--rapidly, sometimes--and it is often difficult both to justify de-

leting old material and to select items to be discarded. Second, the

number of users desiring service may also tend to increase. Both of these

developments increase the load on the system, until eventually it becomes

difficult to provide sufficiently fast response to satisfy on-line users.

A number of systems already in operation are large enough to

experience these problems, and many have prospects for nearly unlimited

growth. To cite a single example, it is reported [1, 2] that Mead Data

Central, Incorporated's LEXIS (formerly OBAR) now contains the full text

of all New York and Ohio statutes and supreme and appellate court deci-

sions plus all United States Supreme Court decisions and a number of other

federal materials. The complete United States Code and all federal court

of appeals and district court decisions are to be available in the spring

of 1974. This data base contains well over 100 million words of English

text and grows at a rate of several million words per year, and the nature

of the material makes deletion of old documents unacceptable. Besides ex-

panding the coverage of its data base, Mead is said to be planning to offer

retrieval services in a number of states not already served.

Other large retrieval systems include those maintained by the

1.0

2

National Library of Medicine [3], to be discussed in more detail later, and

by the United States Patent Office [4].

This report describes a specialized hardware subsystem for per-

forming the time-consuming term access and coordination functions in large,

inverted file, document retrieval systems. It is conservatively estimated

that the time to perform these functions for a large search involving 70

terms can be reduced by factors between 12 and 60 depending upon the size

of the hardware system employed. The speed-up is not so great for a smaller

search involving only a few terms; but in this case, a number of searches

can be performed in parallel with very little effect upon the system, so

that the average elapsed time per search can still be reduced dramatically.

The remaining section of Chapter 1 describes the organization of

inverted file retrieval systems and identifies that portion of their oper-

ation which the proposed hardware will perform. Chapter 2 describes the

hardware components in detail, analyzes the timing constraints imposed by

each and shows that several processors of different sizes and capacities

can be built using currently-available subsystems and logic devices. Chap-

ter 3 describes several fundamental software procedures which must be.pro-

vided to control the operation of the hardware and presents details of the

processing algorithms which have been used in simulating the proposed

system. Chapter 4 presents results of a large number of simulation ex-

periments in which the performance of the system has been evaluated in a

realistic retrieval situation. These tests are based on parameters of

actual searches which could be performed in a particular, large, operational

document retrieval system. Variations in the capacity of the hardware, the

size of the data memory, the size of the data base, and several other

3.

factors are considered. A few results which illustrate the potential of

the system to process multiple independent searches simultaneously are also

discussed. Conclusions are presented in Chapter 5.

1.2 Overational Environment

Nearly all the mechan'zed document retrieval systems currently

in operation employ inverted files for data base organization. Certain.

index terms (possibly all the information-bearing words in the original

text) are selected as descriptors for each document in the system. Each

index term is entered into a directory, the index file, along with certain

information including a pointer into a second directory, the postings file,

which contains a list of all the contexts (documents or document sub-

divisions) identified by the index term in question. To request infor-

mation from such a system, a user provides a list of index terms and

specifies the Boolean relationships (OR, AND, AND NOT) among them which

must be satisfied in any document that is retrieved. The system then

consults the index file to obtain the required postings file addresses,

reads the postings lists, and coordinates them, i.e., selects from them

those context identifiers which satisfy the search logic. This last pro-

ceduiv requires at least one disk access per search term and, if there is

a large number of search terms or if some of the associated postings lists

are very long, it may require a substantial amount of central processor

time as well. The new system described in this report accepts a list of

postings file addresses and performs the access and coordination operations

automatically, at disk speeds.

4

2. TERM COORDINATION HARDWARE

This chapter describes in detail the proposed hardware for in-

verted file processing. Section 2.1 contains a brief general description

of the system and the functions of its various components. Section 2.2

presents a fairly detailed example of its operation, illustrating the

parallel nature of the design and some of the timing constraints which

must be satisfied. Hardware requiremEits are presented in detail, along

with logic designs for the critical components, in section 2.3. Section

2.4 contains a systems-ortnted analysis, showing how the components inter-

act with one another and how their activity is distributed within the

available time. Several design alternatives are discussed, and the as-

sociated limitations are identified. Section 2.5 summarizes the principal

results of the chapter.

2.1 System nslccijaton

Term coordination in inverted file systems can be performed almost

entirely by hardware operating at disk speeds using the configuration shown

in Figure 2.1. Suppose the search "Ll OR L2" is to be performed, i.e., two

ordered lists, Ll and L2, are to be merged into a single ordered list with

duplicate elemeats removed. Suppose further that Ll will be available for

reading before L2. Li and L2 are initially stored on disk in n-word blocks.

When Ll becomes available, it is read into data memory and held there until

L2 comes under the read heads. Merging and ccordination (se%Ltinn of the

desired elements from the merged list) proceed in parallel with the reading

of L2, ano the entire operation is completed shorty' after the last block

of L2 has been read. The output list may be retained in data memory if

13

c'
"1 t
i

C
O

N
T

R
O

L
C

O
M

P
U

T
E

R

C
O

N
T

R
O

L

O
N

11
11

11
1E

..

M
E

R
G

E
N

E
T

W
O

R
K

O
m

C
O

O
R

M
 N

-
A

T
IO

N
N

E
T

W
O

R
K

C
O

N
T

R
O

L

D
A

T
A

C
O

N
T

R
O

L
-1

11
10

.

D
A

T
A

T
O

D
IS

K

D
A

T
A

M
E

M
O

R
Y

F
a
r
e

2
.
1
.

H
a
r
d
w
a
r
e

C
o
n
f
i
g
u
r
a
t
i
o
n

D
IS

K
U

N
IT

S

6

space is available or written back on disk while the coordination procedure

continues.

The heart of the system is the merge network, an "odd-even" merge

of the type proposed by Batcher [5-7]. The basic building block of this

network is the comparison element, Figure 2.2, which accepts two input

numbers and routes their minimum and maximum to its "MIN" and "MAX" output

terminals, respectively. Batcher shows how these elements can be combined

to form a hardware merge network whose input is two n-element ordered lists

and whose output is a single ordered list containing 2n elements.

The coordination network selects from the output of the merge net-

work those elements which satisfy the Boolean logic specified in the search

request, and returns the edited list to the data memory. This function is

accomplished by comparing adjacent terms on the merged list and accepting or

rejecting terms as required.

To match the high speed parallel processing capabilities of the

merge and coordination networks, it is necessary to provide a wide-band data

memory and a disk system, preferably equipped with a hardware queuer, which

has the capability of reading simultaneously from n tracks while at the same

time writing simultaneously on n other tracks. Such a disk is currently in

use with the Illiac IV computer.

The function of the control computer during the merging operation

is one of supervision and bookkeeping. It provides memory management ser-

vices and guarantees that data are routed to the merge network and to the

disk in the proper sequence.

BEST COPY AVAILABLE

X2

7

M I NI (XI, X2)

MA X (Xi, X2)

Figure 2.2. Symbol for a Comparison Element

8

2.2 Example

As an example of the operation of the system consider the two lists

Ll: 3, 5, 8, 10, 12, 27

L2: 2, 3, 5, 6, 10, 13, 25, 27, 33

and the search request "Ll OR L2 ". Again assume that Ll is available from

the disk before L2. Let n=3, so that three elements from either list may be

read or written simultaneously.
1

This effectively divides the two original

lists into five sublists

L11: 3, 5, 8

L12: 10, 12, 27

L21: 2, 3, 5

L22: 6, 10, 13

L23: 25, 27, 33.

Let one hardware cycle be defined as the time required to read or

write one such n-word sublist, i.e., the time required for a conventional

disk to transmit one computer word. This is the amount of time available

for one complete processing sequence in the hardware. The term cycle will be

used in this sense throughout this report except where a different meaning

is specified explicitly or is clearly intended from context.

The first step in processing the sample search request is to read

Ll into data memory. Then, when L2 becomes available, the actions described

below and summarized in Table 2.1 occur during successive hardware cycles.

In the table, Lij refers to sublist j of input list i, LRj refers to sublist

1
Three is a convenient value of n to use for purposes of illustration. In

practice, because of the requirements of the merge network, n must be a
power of two.

C
Y
C
L
E

P
R
O
C
E
S
S
E
S

R
E
A
D

P
A
R
A
L
L
E
L

M
E
R
G
E

C
O
O
R
D
I
N
A
T
E

R
E
T
U
R
N

T
O

W
R
I
T
E

M
E
M
O
R
Y

(
O
P
T
I
O
N
A
L
)

1
L
2
1
(
2
,
3
,
5
)

R
D
(
0
,
0
,
0
)

L
1
1
(
3
,
5
,
8
)

R
1
(
3
,
5
,
8
)

2
L
2
2
(
6
,
1
0
,
1
3
)

R
1
(
3
,
5
,
8
)

F
2
(
2
,
3
,
3
)

1
2
1
(
2
,
3
,
5
)

R
2
(
5
,
5
,
8
)

F
2
(
2
,
3
,
3
)

3
L
2
3
(
2
5
,
2
7
,
3
3
)

R
2
(
5
,
5
,
8
)

F
3
(
5
,
5
,
6
)

L
2
2
(
6
,
1
0
,
1
3
)

R
3
(
8
,
1
0
,
1
3
)

F
3
(
5
,
5
,
6
)

L
R
1
(
2
,
3
,
5
)

4
R
3
(
8
,
1
0
,
1
3
)

F
4
(
8
,
1
0
,
1
0
)

L
1
2
(
1
0
,
1
2
,
2
7
)

R
4
(
1
2
,
1
3
,
2
7
)

F
4
(
8
,
1
0
,
1
0
)

L
R
2
(
6
,
8
,
1
0
)

L
R
1
(
2
,
3
,
5
)

5
R
4
(
1
2
,
1
3
,
2
7
)

F
5
(
1
2
,
1
3
,
2
5
)

L
2
3
(
2
5
,
2
7
,
3
3
)

R
5
(
2
7
,
2
7
,
3
3
)

F
5
(
1
2
,
1
3
,
2
5
)

L
R
3
(
1
2
,
1
3
,
2
5
)

L
R
2
(
6
,
8
,
1
0
)

6
R
5
(
2
7
,
2
7
,
3
3
)

F
6
(
2
7
,
2
7
,
3
3
)

-
-
-
(
H
,
H
,
H
)

R
6
(
H
,
H
,
H
)

F
6
(
2
7
,
2
7
,
3
3
)

L
R
4
(
2
7
,
3
3
,
H
)

L
R
3
(
1
2
,
1
3
,
2
5
)

7
L
R
4
(
2
7
,
3
3
,
H
)

T
a
b
l
e

2
.
1
.

P
r
o
c
e
s
s
i
n
g

S
u
m
m
a
r
y

f
o
r

T
e
r
m

C
o
o
r
d
i
n
a
t
i
o
n

E
x
a
m
p
l
e

10

j of final result, and Fj and Ri refer to the cycle 3 merge outputs at F

and R as shown in Figure 2.1. F is passed to the coordination system and

R is returned to the merge network for further processing. The letter H

denotes the computer word (111.111), which is used as a filler to provide

all postings lists with an integral multiple of n entries.

Processing proceeds as follows:

Cycle 1. A. Read L21.

B. Set R=(0,0,0), and merge R with Lll. This will pro-

duce Jutpuls F1=(0,0,0) and Rl=Lll. Ignore Fl.

Cycle 2. A. Read L22.

B. Merge R1 (L11) and L21. Result F2 contains the n

(three) smallest elements in the combined list, and

can be passed to the coordination network. Result

R2 is returned to the merge network for further

processing. Note that R2 does not contain the data

element 6, which should be on the next sublist of the

merged result.

C. Coordinate F2, i.e., eliminate the duplicate element 3.

Cycle 3. A. Read L23.

B. Compare the first element of L12 with that of L22. It

will be shown later that the smaller of these determines

which sublist should be transmitted next to the merge

network. In this case, the answer is L22.

C. Merge R2 with L22.

D. Coordinate terms in F3 and combine with the previous

result to form the completed sublist LR1(2,3,5) and the

partial result: 6. Return LR1 to data memory.

11

Cycles 4 and 5 proceed as cycle 3 except that no new data are

read from disk. If the output is to be returned to disk, writing can begin

in cycle 4. During cycle 6, "high value" inputs are supplied internally to

the merge network in order to force R5 to the F output terminals. The

resulting F6 is then coordinated, padded with one "H" entry and returned to

memory. If the result is being returned to disk, the last sublist is

written during cycle 7.

In general, if lists Ll and L2 contain i and j sublists, re-

spectively, then one new sublist is processed during each of the first

(i+j) hardware cycles, one additional cycle is required to generate the

last sublist of the result and return it to memory, and one extra cycle is

needed if the result is to be written on disk. The total number of cycles

required, t, is given by

t = i +j +w +l, (2.1)

where w is 1 if the result is written on disk and 0 otherwise.

2.3 Hardware Requirements

Wide variation is possible in the parameters of the proposed sys-

tem, especially with respect to the degree of parallelism employed. A corre-

sponding variation exists in the demands which are placed on the various

system components and in the level of performance which can be achieved.

This section defines hardware requirements in detail, proposes ways in which

they can be satisfied, and identifies the factors which limit the de 0.

The performance capabilities of various configurations are the subject of

Chapter 4.

Throughout this analysis, the objective is to show that the re-

quired subsystems can be realized using currently-available technology and

12

that they can operate within the time constraints imposed by the process.

Where detailed logic designs and their associated timings are discussed,

standard ECL-10,000 components have been assumed [8], and many of the

attractive characteristics of this family of devices have been employed.

In particular, fast Exclusive-OR gates, the "wired OR" and the availability

of both true and complement outputs from most devices have all been used.

Propagation delays have been increased approximately by a factor of 2 (1.5

for shift register parallel input and output) from published typical values

in order to produce a conservative design. Logic symbols and device charac-

teristics employed in these designs are defined in Figure 2.3.

This discussion concentrates mainly on the characteristics of

the largest system which is currently considered practical and useful. In

some cases alternative designs are mentioned, especially where slower,

cheaper components could be employed, but a detailed design optimization

study is beyond the scope of this report.

The standard design chosen for study is a system with 256 parallel

transmission paths throughout (n=256). Smaller systems would, of course,

have correspondingly less stringent requirements: results in Chapter 4

indicate that a very powerful system can be built using only 16 parallel

paths.

A head-per-track disk with the required parallel transmission

facilities and with the other parameters shown in Table 2.2 has been

assumed. The characteristics in the table are typical of a number of well-

established disk units, and a head-per-track disk with parallel transmission

facilities and approximately the required transfer rate has also been

installed.

BEST COPY AVAILABLE 13

NOR Gate

Propagation Delay: 5ns

Exclusive OR Gate

Propagation Delay: Ins

Implied (wired) OR

Shift Register

Propagation Delay: 6ns per operation

Operating Features: Parallel or serial input
Parallel or serial output
Left or right shift

Latch

Propagation Delay: Ins

Truth Table:

.. _ .

C D Qt+ A

L L L

L H H

H L , Qt

H
_

H
1

.
Qt

Outputs are latched on

cioLK

Figure 2.3. Logic Symbols and Device Characteristics

BEST COPY AVAILABLE 14

Type D, Master-Slave Flip-Flop

Propagation Delay: 7ns

Clocked Truth Table: R-S Truth Table:

C D Ot+a
L L Qt

L

L.

Qt
H L L
H H H

Clock "H" is positive
clock transition

R S Ot+A
L Qt
L

_L.

H H
L,H
H N.D.

"N.D." means not defined

R and S inputs are independent
of the clock

Figure 2.3 (continued). Logic Symbols and Device Characteristics

4r w

ILs mil

BEST COPY AVAILABLE
15

Disk rotation time 25. ms

*
Word size 32. bits

Storage density 1800. words/physical track

* *Tracks transmitted in parallel 256. physical tracks/logical track

Read time per sublist (one word

per physical track) 13.89 us

Transfer rate 2.30(106) bits/sec./physical track

589.(106) bits/sec. for total 256 -

head parallel transmission

Each document identifier in a postings file occupies one computer word.

**
Values examined range from through 512.

Table 2.2. Design Parameters for Standard System

16

Postings files are assumed to be organized as n-word sublists

stored in consecutive locations on one or more logical tracks. Each entry

is one 32-bit word which uniquely identifies one document in the data base.

No identifier may appear more than once on any given list except H, the

"high value" filler, which may appear as many as n-1 times, but only on the

last sublist in the file.

2.3.1 Merge Network

For this analysis, a merge network composed of bit-serial compari-

son elements is employed, and it is assumed that data items on each input

list are arranged in nondescending order. In [5], Batcher gives a simple

iterative rule for constructing odd-even merge networks of any desired size

provided the number of elements, h, on each input list is a power of 2. He

also shows that a 2Px2P merging network constructed according to this rule

requires p(2P) + 1 comparison elements and that the longest path through such

a network contains p + 1 comparison elements.

Batcher states that a bit-serial comparison element can be imple-

mented with 13 NORS, but does not give a specific design. One possible

implementation is shown in Figure 2.4. An initial Reset signal, R, leaves

yi = y2 = 0. As long as x1 = x2, no change occurs, and the outputs are

equal. As soon as x1 and x2 differ, y1 and y2 are changed to establish the

appropriate output connections and locked into their new states until another

reset signal is received.

The longest path through one comparison element contains seven

gates and thus requires a propagation time of 35ns under the assumptions of

BEST COPY AVAILABLE

X1 X2 R

17

y1 21 ff-Y.2 (X1+ Y1)(12+ Y1)

Y2 = Ry1 (1c1+y2)(x2+y2)
MIN = xi y2+x2Y2

MAX = xi72+x2Y2

Figure 2.4. Logic Diagram for a Comparison Element

MIN

MAX

18

Figure 2.3. If Ins latches are installed at the outputs of each comparison

element, then new inputs may be accepted every 42 nanoseconds.

Table 2.3 lists the number of comparison elements, the gate counts

and the maximum path lengths for network sizes of interest. '.he table also

shows the time required to merge two, n-element lists of 33-bit words2 in

networks with and without latches at each stage.

The example in the previous section emphasized thr: fact that only

half the output of the merge network (n terms) is available fwr coordination

after each hardware cycle; the other half must be fed back into the network

for comparison with the next input list. A group of n, 33 bit shift regis-

ters is required to collect the bit serial output from one cycle and present

it for processing in the next, as illustrated in Figure 2.5.

Special inputs to the merge network are used during the first and

last cycles of a merge procedure in order to force the first and last sub-

lists to the proper output terminals. During the first cycle, the shift

registers are cleared to 0 and then applied to the lower input terminals.

Consequently, after the first cycle, the upper outputs are all zero and the

lower outputs contain valid data from the upper inputs. During the last

cycle of operation, the upper inputs are all set to 1 so that after that

cycle is complete, the lower inputs appear at the upper outputs and all the

shift registers at the lower outputs are filled with l's.

2
The thirty-third bit is supplied by the system as required for the "AND NOT"
coordination algorithm to be described in section 2.3.2.

I
n
p
u
t

L
i
s
t

L
e
n
g
t
h

C
o
m
p
a
r
i
s
o
n

E
l
e
m
e
n
t
s

o
n

L
o
n
g
e
s
t

P
a
t
h

T
o
t
a
l

C
o
m
p
a
r
i
s
o
n

E
l
e
m
e
n
t
s

T
o
t
a
l

G
a
t
e
s

M
e
r
g
e

f
o
r

T
w
o

L
i
s
t
s

o
f

W
i
t
h
o
u
t

L
a
t
c
h
e
s

,

T
i
m
e

3
3
-
b
i
t

W
o
r
d
s

W
i
t
h

L
a
t
c
h
e
s

1
1

1
1
3

1
.
1
5
5

u
s

1
.
3
8
6

u
s

2
2

3
3
9

2
.
3
1
0

1
.
4
2
8

4
3

9
1
1
7

3
.
4
6
5

1
.
4
7
0

8
4

2
5

3
2
5

4
.
6
2
0

1
.
5
1
2

1
6

5
6
5

8
4
5

5
.
7
7
5

1
.
5
5
4

3
2

6
1
6
1

2
,
0
9
3

-

6
.
9
3
0

1
.
5
9
6

6
4

7
3
8
5

5
,
0
0
5

8
.
0
8
5

1
.
6
3
8

1
2
8

8
8
9
7

1
1
,
6
6
1

9
.
2
4
0

1
.
6
8
0

2
5
6

9
2
0
4
9

2
6
,
6
3
7

1
0
.
3
9
5

1
.
7
2
2

S
1
2

1
0

4
6
0
9

5
9
,
9
1
7

1
1
.
5
5
0

1
.
7
6
4

T
a
b
l
e

2
.
3
.

M
e
r
g
e

N
e
t
w
o
r
k

C
h
a
r
a
c
t
e
r
i
s
t
i
c
s

U
P

P
E

R
 IN

P
U

T
S

(
F

R
O

M
 D

A
T

A
 M

E
M

O
R

Y
 1

't

LO
W

E
R

 IN
P

U
T

S
(

F
R

O
M

 L
O

W
E

R
 O

U
T

P
U

T
S

)

N
+

1
as

N
+

2
0

N
 +

3
0

2
N

M
E

R
G

E
N

E
T

W
O

R
K

I 2 3 N

14
4'

.-
--

2-
11

4
N

+
2

N
+

3

2N

U
P

P
E

R
 O

U
T

P
U

T
S

(
T

O
 C

O
O

R
D

IN
A

T
IO

N
 N

E
T

W
O

R
K

 i

S
H

IF
T

R
E

G
IS

T
E

R
S

F
i
g
u
r
e

2
.
5
.

M
e
r
g
e

N
e
t
w
o
r
k

F
e
e
d
b
a
c
k

C
o
n
n
e
c
t
i
o
n
s

LO
W

E
R

 O
U

T
P

U
T

S
(

T
O

 L
O

W
E

R
 IN

P
U

T
S

)
IV 0

21

2.3.2 Coordination Network

2.3.2.1 General Description

The function of the coordination network is to select from the

output of the merge network those document identification numbers which

satisfy the current search request.

Suppose that the current output of the merge network is

1
A'

1
132

2
A'

3
A'

3
B'

4
B'

5
A'

H8,

where the subscripts indicate the list of origin and "H" represents the

filler word which may occur at the end of a list. Then, the three allow-

able searches and the desired results are

and

A OR B = 1, 2, 3, 4, 5

A AND B = 1, 3

A AND NOT B = 2, 5.

In order to make this selection, the coordination network employs

n identical logic circuits which compare adjacent postings as they arrive

in bit serial form from the merge network, and generate the appropriate

control signals for the search procedure at hand. These signals are then

tested in reverse sequence from n to 1, and the signal at stage i is used

either to retain the output at stage i or to eliminate it by shifting up

one stage all current outputs from stages i+1 through n. If shifting

occurs, the filler word is entered into stage n. A collection of shift

registers is used for assembling the outputs from the merge network and for

retaining the appropriate entries during the compression process. The

22

arrangement of these components is shown in Figure 2.6. In addition, the

coordination network contains a collection of n registers not shown in the

figure which serve as a buffer for data being transferred into memory.

On the left side of the figure are the circuits which generate

the required control signals. Each of these has the following inputs:

RESET - initializes the circuit for a new cycle of

operation.

m., Fr- - i
th

output from the merge network. Both the

xi

true signal and its complement are assumed to

be available. Mi is used internally and is

also passed directly to the output as xi.

- i+11I output from the merge network.

A, 0, N - control signals used to select the desired co-

ordination function. Each of these signals is

normally 1, and is changed to 0 when in active

use.

C, Cl - timing signals.

Eli+1 - a control signal from the next higher numbered

stage.

- a control signal from the next lower nuaberedE2
i-1

stage.

REO - a two-way line used to broadcast the current in-

struction to all stages during the compression

operation.

BEST COPY AVAILABLE

0 A E20 Eli
RESET jip it 1 1

MI 1
M1 ..
c---\
ci--.

.23

SHIFT
REQUEST

I

xt
SELECT

1.---f
J REO

TTT
E21 Ell Xs

0 A E2,..1 El, X,

4

iiiii
M,------0

RESET

M, 0 SELC ..
Cl-...--40

E2,

----fp
i-1 REO

PARALLEL
ENTRY
CONTROL

Rid(PRIMARY)

Rita

t t

1....... E1,4.1

f t
Ca

Rio

Iflab(SECONDARY)

SEL, +I

; I
E2141 E I , 4.2 X142

N 0 A E28-1
RESET ---; 1 1 1 1M
la,,,--40

C

Cl"41,

ONO .1 REO

Elm
A

a

SEL,,

111. .' REO
E21

I
U8+1)(6+11 1

R i 4 to

I Rio

RI +2s

Figure 2.6. Coordination Network Interconnections

f
1. 0 .h*,

24

Outputs include Eli and E2i which are transmitted to the neighboring stages;

and x
i'

the 33-bit serial output from the merge network, which !s collected

in the primary register at stage i for further processing and also trans-

mitted to the control cirtuit for stage i-l.
3

The SEL and REQ signals

control shift register operation.

Each stage of the coordination network contains one primary and

one secondary 32-bit processing register. The primary registers must be

able to perform shifts (for collecting serial data) and have parallel input

and output facilities. The secondary registers, which may be simpler

devices than the primary registers, serve to isolate the primary registers

and hold data temporarily on its way from one stage to another: no shifting

capability is required. The secondary register in stage n should have all

its input lines permanently set at 1.

Operation of this network proceeds in three phases, to be referred

to as steps 1, 2 and 3, where steps 1 and 2 can be implemented as shown in

Figure 2.7.

2.3.2.2 Step 1 Processing

The stage i output of step 1 is the signal zi, which must be

available for all i before step 2 begins. The system has been designed so

that no matter which procedure (AND, OR, NOT) is being performed the signal

z. = 1 causes the contents of primary register i to be "erased", while the

signal zi = 0 causes the contents of primary register i to be retained. The

3
Only the 32-bit document identification number must be saved in the regis-
ters.

L
1 C

R
E
S
E
T

L
A
T
C
H

A
F
T
E
R

3
2

B
I
T
S

O
w

 X
i

D
i

S
T

E
P

 1

0
S

0
A

V

M
i

L
2

£
2
,

Z
i

L
A
T
C
H

A
F
T
E
R

3
3

B
I
T
S

1 1 1

2
1

n
s

5

n
s

n
s

N
O

T
E

: I
N

P
U

T
 C

O
N

S
IS

T
S

 O
F

 3
3

B
IT

S
P

R
E

S
E

N
T

E
D

 S
E

R
IA

LL
Y

 A
T

 M
I

A
N

D
 X

14
1.

 D
IS

A
B

LE
 C

LO
C

K
 T

O
D

l A
F

T
E

R
 3

2
B

IT
; L

A
T

C
H

L2
 A

F
T

E
R

 IT
 R

E
S

P
O

N
D

S
 T

O
33

1.
:4

 B
IT

.

A
 O

 N
 S

IG
N

A
L

LE
V

E
LS

P
R

O
C

E
D

U
R

E
A

0
N

A
N

D
L

H
H

O
R

H

N
O

T
H

L
L

S
T

E
P

 2

R
E
S
E
T

-
-
O
m

F
i
g
u
r
e

2
.
7
.

D
e
t
a
i
l
s

o
f

C
o
o
r
d
i
n
a
t
i
o
n

S
t
e
p
s

1

a
n
d

2

02

S

0

R

t

E
l
i

E
l
i
+
i

E
2
1

26

following rules determine zi, where wi is the complete document identifi-

cation nulaber associated with stage i:

For "A OR B", zi = 1 if and only if wi = wi+7 , (2.2)

For A AND B, zi = 1 if and only if wi # wi+i (2.3)

For A AND NOT B, zi = 1 if and only if either (2.4)

wi = wi+1 or wi originated

on list B.

rdThe origin of word wi is determined from the 33-- bit at stage i, which is

0 for items from list A and 1 for items from list B. This last bit is dis-

carded after the necessary determination has been made.

As shown in Figure 2.7, the equality or inequality of wi and

w
i+1 is determined by means of flip-flop D1 and latch Ll. Output Q of the

flip-flop is initially set to 1. As long as successive bits of wi and

w
+1

remain equal, the output of the exclusive OR (and of L1) is 0, and 01

does not change. However, as soon as any pair of bits from wi and w1 fail

to match, D1 is switched. Output Q then remains zero until another reset

signal is received. The clock signal to latch Ll is normally kept high to

prevent spurious signals from affecting Dl. Ll is "opened" after each of

the first 32 bits is received, but not after the 30 bit. In this way the

Q output of D1 is made to indicate whether or not the two adjacent document

identification numbers are equal, but it is not affected by values of the

source tags transmitted as the 33rd bit. The effect of source tags is

registered by gate N3, whose output can be non-zero only when the "AND NOT"

operation is being performed.

27

Finally, the control signal zi is generated as the implied OR of

the outputs from gates N1, N2 and N3 after transmission of the 33rd bit and

retained at the output of latch L2 until after step 2 of the coordination

processing is complete. When the coordination procedure is AND or OR, only

gate N1 or N2 conducts, and zi is formed according to (2.2) or (2.3). When

the coordination procedure is NOT, both N2 and N3 conduct; and, as (2.4)

requires, zi = 1 whenever W., = w1 +1 or whenever the 33rd bit transmitted at

stage i is 1, i.e., when the ith document identification number originated

on list B.

The propagation time through step 1 depends upon the path of

interest (Figure 2.7), but in any case it is always shorter than the propa-

gation time through a comparison element in the merge network. Thus, the

only delay of real interest is the 12ns propagation time of bit 33. For the

sake of uniformity in hardware timing and operation, it is assumed that 33-

bit inputs are always used and that signal zi is available 12ns after the

thirty-third input is received at the step 1 terminals. The 30 bit, of

course, has no effect on the value of zi for AND and OR processing.

2.3.2.3 Step 2 Processing

The operation of coordination step 2 will be explained with the

aid of Figure 2.8 and Table 2.4. Figure 2.8 is a logic diagram for the last

three stages (n-2 through n) of step 2, illustrating the interconnections

between stages. Table 2.4 lists the signal states in these stages during

the first three cycles of operation.

lhe D2 flip-flops constitute a shift register which is used to

BEST COPY AVAILABLE
28

- WO ONO VINO ONO WO MO

RESET

02n-2

E2n-3

Eln-2

an-2

N4n.

-JS
STAGE n-2
111111:=11=111MINIMMEr

WM 0111 0111V 111111 ON MO NMI

RESET

STAGE n-i1111=M=

MO ONO 411IM MO IMO WOO

R

D

CI

D2n_i

0

R

0 it

CI

D2n

E

E2n_2

n-i

RESET --0,S 0

STAGE n

EIntrAlm D

CI

SHIFT
REQUEST

LINE

E2n-i

Elf)

an

Sn.2

S 1

Figure 2.8. Coordination Step 2 Interconnections, Final Three Stages

Z. I

E
l
n

1

E
l
n

S
T
A
G
E

E
2
n
-
1

S
T
A
G
E

S
T
A
G
E

R
E
l
n
-

E
2
n
-

n
-
1 R

.
-

n
-

-
.
1

1
-

E
2
n
_
3

n

2 R

n
-

I
N
I
T
I
A
L

1
1

0
0

0
1

0
0

0
1

0
0

0

C
Y
C
L
E

1

0
0

0
Z
n

Z
n

1
0

Z
n

0
1

0
Z
n

0

C
Y
C
L
E

2

0
0

1
-

n
-
1

0
0

n
-

n
-

1
0

n
-
1

0

C
Y
C
L
E

3

0
0

1
-

n
-
2

0
1

n
n
-
2

0
0

n
Z
n
-
2

T
a
b
l
e

2
.
4
.

C
o
o
r
d
i
n
a
t
i
o
n

S
t
e
p

2

C
o
n
t
r
o
l

S
i
g
n
a
l
s

f
o
r

F
i
r
s
t

T
h
r
e
e

C
y
c
l
e
s

o
f

O
p
e
r
a
t
i
o
n

30

control the selection of successive control signals. 444Tatle 2.4 shows, the

true outputs of all flip-flops (signals Eli) are initially set to 1, causing

R and all Si to be 0. For the first cycle of operation, Eloi is changed to

0 and Cl is pulsed, reversing the outputs of D2n, but not those of any other

flip-flop. At this point, Eln = E2n_i = 0, and R = in. Note that gate N4

is "off" in all stages except the nth because the El signal in all other

stages is 1. For the same reason, Si = 0 for all i # n, but Sn = Zn. Now

a different clock signal, C2 (see Figure 2.6), causes each primary shift

register whose SELECT signal (Si) is 1 to accept inputs from the stage below.

During the second cycle of operation, the 0 at Eln is clocked

through D2n_i, reversing its state and leaving Eln_i = 0 and E211.1 = 1.

Stage n-1 now behaves like stage n did id the previous cycle, setting

R = 2.11.1 and Sn_i Z
-n-1'

At the same time, E2n_i turns off gate N4n,

isolating Zn from the request line. Eln, however, is still 0, and so

S
n

= P:= Z
n-1' All other stages are unaffected by these changes and gener-

ate Si = 0. Now, if Zn_i = 1, C2 will cause the primary register in each of

the last two stages to accept inputs from the stage below. If Zn..1 = 0,

however, no further action will occur during the second cycle.

Allowing a 5ns delay per gate, 7ns to switch D2 and lOns to broad-

cast the REQUEST signal, Tv the first phase of the step 2 operating cycle

requires 27ns. During this same time period, under the control of Cl, all

secondary processing registers are loaded from the primary registers in the

stage below. Six nanoseconds are required for loading primary registers

31

during the second phase of the cycle, giving a total cycle time of 33ns.

A coordination network with a 33 nanosecond operating cycle would

require t1 = 8.448 microseconds to process a list of 256 inputs. Of course

it may be practical to bypass stages for which Z = 0, but 8.448 u sec.

remains as a worst case possibility.

Faster operation can be achieved by implementing step 2 as k

smaller units which operate in parallel on input lists of length n/k and

complete the task in ti/k u sec. Except, perhaps, for the duplication of

control signals, no special provisions of any kind would be required to

implement step 2 in this way--and problems associated with broadcasting the

REQUEST signal, R, would be reduced. A small amount of additional com-

plexity would be introduced into the control of step 3, where the outputs

from the separate units would have to be combined into a single list.

2.3.2.4 Step 3 Processing

At the completion of step 2, the n primary registers in the step 2

processor contain some unpredictable number, k (0 < k < n), of valid document

identifiers followed by n-k "fillers". These n words cannot stmply be re-

turned to memory because they may constitute only a small part of the output

from the current coordination procedure, which may take several hardware

cycles to complete. Retaining the output from step 2 after each cycle would

produce a final result containing groups of valid pointers separated by groups

of fillers. That would be unacceptable as input for further processing either

as a part of the present search or in a subsequent search. Thus, it is neces-

sary to collect valid results from step 2 until a complete sublist of n

document identifiers is available or until the current process has been

32

completed. The last sublist returned to memory from any coordination pro-

cedure may, of course, contain fillers.

The required "packing" is accomplished by means of a second set of

registers similar to those in the step 2 processor. Again a system of pri-

mary and secondary registers or equivalent physical devices is employed; and

again the primary registers should be capable of serial shifting as well as

parallel input and output, while the secondary registers need only perform

parallel input and output operations. These registers serve both as a

collection device for results from step 2 and as a transposer and buffer for

results returning to memory. Their relationship to other parts of the sys-

tem is shown in Figure 2.9.

This compression system is controlled by means of counters CS2 and

CS3 in the step 2 and step 3 processing units, respectively. Before step 2

nthbegins, CS2 is loaded with the number n. The n stage SELECT signal, Sn,

and the C2 clock are used to decrement the counter each time the contents of

the step 2 registers are shifted up one stage. When the procedure is com-

plete, the first k registers contain valid results, the last (n-k) registers

contain fillers, and the number k appears in CS2. This counter can then be

used to control the number of shift cycles performed in moving the results

into the step 3 unit. As Figure 2.9 indicates, data items move from the top

of the list in step 2 to the bottom of the list in step 3.

CS3 is loaded initially with the value n and decremented each time

an input is received from step 2. When the step 3 counter reaches 0, all

step 3 registers contain valid results. At this time, further transfers

from step 2 are suspended, the contents of the step 3 registers are returned

to memory, CS3 is reinitialized and transfers are resumed. During all

BEST COPY AVAILABLE

FROM
COORDINAT

STEP I

FROM
COORDINATION

STEP I

nit

a/4

2114

2% I

3n4

33

STEP 2 OUTPUT STEP 3
REGISTERS

ill=1
2

I I

. .
rt

S

COUNT E It CS/

2
TO

MEMORY

COUNTER CS3

'Tr

(a) One Step 2 Processor

STEP 2 OUTPUT STEP 3
REGISTERS

Se 1

COUNTER CS20

I I

See

t

COUNTER CS2b

51%
COUNTER CS2e

3^/4 ---

rt

Ii
I

I

1

t___._1

COUNTER CS24
r-----1

COUNTER C33

(b) Four Parallel Step 2 Processors

TO
MEMORY

Figure 2.9. Transfer Mechanism Between Coordination Steps 2 and 3

34

hardware cycles except the last, transfers between steps 2 and 3 stop when

CS2 reaches 0. In the last cycle only, CS2 and CS3 must both be decremented

to 0 in order to eliminate unwanted entries from the top of the last sub-

list and place fillers in their proper positions at the bottom.

If several step 2 processors operate in parallel, then step 3

control becomes slightly more complicated in that each of these units must

be emptied in turn into the step 3 registers. The control unit will have

to provide for the necessary switching and supervision.

An estimate of the time required in step 3 for a single move from

one primary register to the next is 13ns, with 3.33 us needed to transfer

the entire contents of 256 step 2 registers.

2.3.2.5 Merge and Coordination Control Requirements

Control unit requirements for the hardware system described here

are very modest. A 20 MHz (50ns pulse interval) clock and a signal indi-

cating the availability of data from the memory are required to control the

merge network, the latch in coordination step 1, and the shift register in-

puts in step 2. In addition, one or two counters are needed to initiate

and terminate various step 1 operations at the proper times relative to the

operation of the merge network.

Step 2 requires a timing interval of about 33ns (50 or 25ns might

be acceptable) and a provision to produce a second clock pulse at a fixed

interval relative to the first. This step generates internally a signal

pair (El
1

= 0, E2
1
= 1) which can be used to determine when processing is

complete without any additional control unit activity. Step 3 requires a

single clock for the primary registers and appropriate circuitry to delay

35

the clock signal for the secondary registers and to monitor the various

counters and generate requests fo. memory transfers. A clock interval of

12.5ns is adequate for step 3 so that a basic clock frequency of 80MHz and

the submultiples of 20 and possibly 40 MHz can be used to control the entire

hardware system.

2.3.3 Data Memory

The proposed design requires a memory with a very high data rate

(0(109) bits/sec.) and short effective cycle time (10Ons or less). While

these requirements are stringent, they can presently be met either directly

by means of bipolar devices or indirectly by interleaving slower MOS units.

Because blocks of information are routed through the system in a

serial-by-bit, parallel-by-word fashion, it is natural to store data in

"transposed" format. That is, the iIh-n-bit physical word in the memory

may actually contain the ith bit from each of n data items. For the stan-

dard system under discussion k-word by 256-bit memory modules would be used,

where k is an integral multiple of 32.

Under the most severe operating conditions, simultaneous input

and output to both the disk and the hardware coordination system would be

required, and high priority memory transactions would occur at the rate of

about one every 100ns. With n = 256, the corresponding overall transfer

rate would be approximately 2409 bits/second. As shown in section 2.4

below, all required transfers can be accomplished simply and without serious

conflicts using either a single 100ns cycle memory module or a collection

of four interleaved submodules each with a cycle time of 400ns.

At least one semiconductor manufacturer, Intel [9], is now pro-

moting a 100ns bipolar memory system with the required characteristics at a

36

price of about ten cents per bit. More such systems and lower prices are

to be expected in the near future. A number of 400ns MOS units are also

available.

2.3.4 Disk File System

To match the high speed parallel processing capabilities of the

merge and coordination networks, a wideband mass storage device is required

for the postings file. Analyses to date have assumed the use of a head-per-

track disk with the capability of transmitting n tracks simultaneously. The

system should be capable of reading n tracks from one channel while writing

n tracks on another. It should also be equipped with a hardware queuer

which would permit the servicing of a group of outstanding I/O requests in

the order in which the referenced addresses became available, reducing

considerably the time required to process search requests involving large

numbers of terms.

The Illiac IV disk file system [10-12], effectively meets all

these requirements. It consists of two Burroughs Model II disk files

operating on separate channels, each with sufficient electronic circuitry

for reading or writing simultaneously on 128 tracks of one disk. Both

channels can operate concurrently at full capacity. The system employs a

disk file optimizer (hardware queuer) which accommodates up to 24 out-

standing I/O requests. The total storage capacity of this system is 109

bits, and its maximum transmission rate is 109 bits/second.

2.3.5 Control Computer

At the present stage of design, no specific implementation can be

given for the control computer. Conceptually, it is a computer with

37

responsibility for a number of supervisory functions to be performed before

or during the operation of the specialized hardware. Some of these functions

may be distributed among the controllers for the individual devices, they

may be performed by one or more dedicated processors which have been opti-

mized for this application, or they may reside mainly within the computer

which has overall control of the retrieval system.

The required functions are of four broad types: communication

with the rest of the system, memory management, routing of sublists, and

internal control. The communication function consists of accepting re-

quests for service and postings file addresses from the main system and

generating the appropriate signals and control information when a search

is complete. Memory management refers to the dynamic allocation of space

in the data memory and on any scratch disks which may be used to process

a search. This function represents a heavy computational load since, during

any hardware cycle, two sublists may be removed from the data memory and two

more may enter. Routing in the present context means providing sublists to

the merge network (and to the disk) in the proper order (see section 3.1).

Finally, internal control refers to algorithmic decisions such as when to

write intermediate results on disk and whether to read, merge or skip a

particular list when it becomes available. These decisions are dictated by

the system resources available and the nature of the search at hand. They

have a crucial role in determining the overall performance capabilities of

the system.

2.4 System Integration

The purpose of this section is to illustrate how the various sub-

systems function together, especially with respect to their separate timing

38

requirements and to the total time available for a complete operational

cycle. Without presenting an exhaustive catalog of possible designs, the

range of alternatives available is outlined. The approach here is to

choose a basic design which satisfies all constraints and then examine

various departures from this design which may be desirable and various

problems which can arise. It is assumed that the data memory contains a

number of independent modules which may be accessed simultaneously. The

term memory conflict implies multiple simultaneous requests for access to

a single module: only one such request can be honored during any given

memory cycle. Multiple requests involving different modules may be ser-

viced concurrently and do not present conflicts. Timing information from

sections 2.3.1 and 2.3.2 will be used-extensively, and it may be helpful

to refer to Figure 2.7.

First, consider the overall organization of the system and the

timing requirements for individual operations, as shown in Figure 2.10.

For thk. basic design analysis, assume that n, the number of parallel data

paths, equals 256. A hardware cycle begins with 32 memory fetches to obtain

data. The rate at which this information may be applied to the hardware is

determined by the cycle rate of the memory, subject to the 42ns minimum

interval between bits required by the merge network. A thirty-third bit

supplied by the control system propagates through the merge network in

378ns, and requires an additional 12ns in step 1 of the coordination system.

If step 2 is implemented as a single unit with 256 registers, then it

requires a processing time of 8.448 us. If a cluster of four identical

64-register units operating in parallel is employed, then the processing

time can be redliced to 2.112 us. Coordination step 3 contains 256 primary

D
A

T
A

M
E

M
O

R
Y

M
E

R
G

E

(*
IN

P
U

T
IN

P
U

T
M

E
R

G
E

B
U

F
F

E
R

)
R

E
G

IS
T

E
R

S
N

E
T

W
O

R
K

M
E
M
O
R
Y

0
.
0
5
0
-
0
.
2
0
0

u
s

p
e
r

c
y
c
l
e

f
o
r

3
2

c
y
c
l
e
s

(
o
n
e

w
o
r
d

c
o
n
t
a
i
n
s

3
2

b
i
t
s
)

A

M
E
R
G
E

r-
--

-
C

O
O

R
D

IN
A

T
IO

N
 N

E
T

W
O

R
K

H
O

LD
IN

G
(O

U
T

P
U

T
R

E
G

IS
T

E
R

S
S

T
E

P
 1

S
T

E
P

 2
S

T
E

P
 3

B
U

F
F

E
R

)

0
.
3
7
8

u
s

t
o
t
a
l

d
e
l
a
y

f
o
r

o
n
e

b
i
t

0
.
0
4
2

IA
m
i
n
i
m
u
m

i
n
t
e
r
v
a
l

b
e
t
w
e
e
n

b
i
t
s

B
u
f
f
e
r
s

A

a
n
d

B

m
a
y

b
e

i
n
s
e
r
t
e
d

f
o
r

c
o
n
t
r
o
l

o
f

m
e
m
o
r
y

c
o
n
f
l
i
c
t
s
.

S
T
E
P

1

;

0
.
0
1
2

u
s

d
e
l
a
y

f
o
r

b
i
t

3
3

<

0
.
0
3
3

u
s

d
e
l
a
y
!

f
o
r

b
i
t
s

1
-
3
2

I

(
m
a
s
k
e
d

b
y

m
e
r
g
e
:

o
p
e
r
a
t
i
o
n
)

C
O
O
R
D
I
N
A
T
I
O
N

S
T
E
P

2

0
.
0
3
3

u
s

p
r
o
c
e
s
s
i
n
g

p
e
r

w
o
r
d

F
o
r

2
5
6

w
o
r
d
s
:

8
.
4
4
8

u
s

i
n

o
n
e

u
n
i
t
;

2
.
1
1
2

u
s

i
n

f
o
u
r

p
a
r
a
l
l
e
l

u
n
i
t
s

D
A

T
A

M
E

M
O

R
Y

S
T
E
P

3

0
.
0
1
3

u
s

p
r
o
c
e
s
-

s

s
i
n
g

p
e
r

w
o
r
d

F
o
r

2
5
6

w
o
r
d
s
:

;
3
.
3
2
8

u
s

F
i
g
u
r
e

2
.
1
0
.

T
i
m
i
n
g

S
u
m
m
a
r
y

f
o
r

H
a
r
d
w
a
r
e

S
u
b
s
y
s
t
e
m
s

M
E
M
O
R
Y

0
.
0
5
0
-
0
.
2
0
0

u
s

p
e
r

c
y
c
l
e

f
o
r

3
2

c
y
c
l
e
s

(
o
n
e

w
o
r
d

c
o
n
t
a
i
n
s

3
2

b
i
t
s
)

40

registers and requires up to 3.328 us for its operation. Finally, 32 memory

cycles are required to transfer results back into memory. Cumulative pro-

cessing time requirements, assuming no me,ry conflicts, are shown in Table

2.5 for systems with effective memory cycle times of 50, 100 and 200ns and

with 1 and 4 step 2 processing units. Table 2.6 contains the corresponding

data for a system with n = 16, except that only one step 2 processor is

considered.

The time required for the disk to read one word from each of n

tracks is approximately 14 is (13.89 Oh and this determines the maximum

allowable processing time for one hardware cycle. Two candida' .; from Table

2.5 meet this criterion. Both employ four parallel step 2 processors; one

has a 5Ons memory cycle, and the other has a 100ns cycle. The 100ns system

is chosen as a standard, and the remainder of this chapter is devotad to a

further analysis of its timing requirements.

A time distribution for processing activities in a typical 0)er-

ating cycle of the standard system is shown in Figure 2.11. In the absence

of memory conflicts, the entire procedure including the return of results

to memory can be completed within 12.33 0, leaving about 10% of the avail-

able time (region f in the figure) free for contingencies. Times shown

include generous allowances for delays within the circuit components, and

they reflect the worst-case situation in which two, 256-input lists, with-

out any common entries are processed using the operation OR. Duplication of

elements tends to reduce the size of region d. For AO's, which normally

produce only a few result postings, region d is usually much shorter and

region e frequently disappears altogether as the results of several hardware

cycles may be collected in the step 3 output buffer.

1

I

k
*
C
O
O
R
D
.

L
.

M
E
M
O
R
Y

A
C
C
E
S
S

*
*

N
O
.

O
F

S
T
E
P

3

M
E
M
O
R
Y

W
R
I
T
E

E
F
F
E
C
T
I
V
E

C
O
M
P
L
E
T
E

(
3
2

M
E
R
G
E

M
E
R
G
E

C
O
O
R
D
.

S
T
E
P

P
A
R
A
L
L
E
L

W
O
R
D
.

C
O
M
P
L
E
T
E

C
O
M
P
L
E
T
E

(
3
2

M
E
M
O
R
Y

C
Y
C
L
E
S
,

N
O

S
T
A
R
T

C
O
M
P
L
E
T
E

1

C
O
M
P
L
E
T
E

S
T
E
P

2

S
T
E
P

2

(
2
5
6

C
Y
C
L
E
S
,

N
O

r
Y
C
L
E

C
O
N
F
L
I
C
T
S
)

(
B
I
T

1

I
N

B
I
T

3
3

O
U
T
)

(
B
I
T

3
3

O
U
T
)

U
N
I
T
S

C
O
M
P
L
E
T
E

T
R
A
N
S
F
E
R
S
)
,

1
3

8
1
6

R
s

7
.
4
8
0

C
O
N
F
L
I
C
T
S
1
.
.
,

5
0
.
n
s

1
.
6
0
0

v
s

0
.
0
5
0

s
2
.
0
2
8

s
2
.
0
4
0

p
S

1
1
0
.
4
8
b
o
,

4
.
1
5
2

1
5
.
4
1
6

N
s

9
.
0
8
0

5
0
.

1
.
6
0
0

0
.
0
5
0

2
.
0
2
8

I
2
.
0
4
0

4

1
0
0
.

3
.
2
0
0

0
.
1
0
0

3
.
6
7
8

3
.
6
9
0

1
1
2
.
1
3
8

1
5
.
4
6
6

1
8
.
6
6
6

1
0
0
.

3
.
2
0
0

0
.
1
0
0

3
.
6
7
8

3
.
6
9
0

4
5
.
8
0
2

9
.
1
3
0

1
2
.
3
3
0

2
0
0
.

6
.
4
0
0

0
.
2
0
0

6
.
9
7
8

6
.
9
9
0

1
1
5
.
4
3
8

1
8
.
7
6
6

2
5
.
1
6
6

2
0
0
.

6
.
4
0
0

'

0
.
2
0
0

6
.
9
7
8

6
.
9
9
0

I
4

9
.
1
0
2

1
2
.
4
3
0

1
8
.
8
3
0

*

C
o
n
d
i
t
i
o
n
s
:

M
e
m
o
r
y

M
o
d
u
l
i

D
i
m
e
n
s
i
o
n
s
:

k

w
o
r
d
s

Y

2
5
6

b
i
t
s

2
5
6

P
a
r
a
l
l
e
l

D
a
t
a

P
a
t
h
s

N
o

M
e
m
o
r
y

C
o
n
f
l
i
c
t
s

T
h
r
e
e

p
r
o
c
e
s
s
e
s

p
r
o
c
e
e
d

s
i
m
u
l
t
a
n
e
o
u
s
l
y
:

i
n
p
u
t

f
r
o
m

m
e
m
o
r
y
,

m
e
r
_
1
,

a
n
d

c
o
o
r
d
i
n
a
t
i
o
n

s
t
e
p

1
.

*
*
D
u
r
i
n
g

a
n
y

p
a
r
t
i
c
u
l
a
r

h
a
r
d
w
a
r
e

c
y
c
l
e
,

m
e
m
o
r
y

o
u
t
p
u
t

m
a
y

o
r

m
a
y

n
o
t

t
a
k
e

p
l
a
c
e
.

I
f

p
r
e
s
e
n
t
,

i
t

m
a
y

f
o
l
l
o
w

c
o
o
r
d
i
n
a
t
i
o
n

s
t
e
p

3
,

o
r

i
t

m
a
y

i
n
t
e
.

p
t

s
t
e
p

3
.

T
a
b
l
e

2
.
5
.

C
u
m
u
l
a
t
i
v
e

T
i
m
i
n
g

f
o
r

H
a
r
d
w
a
r
e

C
y
c
l
e

w
i
t
h

2
5
6

P
a
r
a
l
l
e
l

D
a
t
a

P
a
t
h
s

E
:
F
E
C
-

T
I
V
E

M
E
M
O
R
Y

C
Y
C
L
E

M
E
M
O
R
Y

A
C
C
E
S
S

C
O
M
P
L
E
T
E

(
3
2

C
Y
C
L
E
S
,

N
O

C
O
N
F
L
I
C
T
S
)

*
M
E
R
G
E

S
T
A
P
T

(
B
I
T

1

I
N

M
E
R
G
E

C
O
M
P
L
E
T
E

(
B
I
T

3
3

O
U
T
)

*
C
O
O
R
D
.

S
T
E
P

1

C
O
M
P
L
E
T
E

(
B
I
T

3
3

O
U
T
)

N
O
.

O
F

P
A
R
A
L
L
E
L

S
T
E
P

2

U
N
I
T
S

C
O
O
R
D
.

S
T
E
P

2

C
O
M
P
L
E
T
E

*
*
C
O
O
R
D
.

C
O
O
R
D
.

S
T
E
P

3

C
O
M
P
L
E
T
E

(
1
6

T
R
A
N
S
F
E
R
S

*
*
M
E
M
O
R
Y

W
R
I
T
E

C
O
M
P
L
E
T
E

(
3
2

C
Y
C
L
E
S
,

N
O

C
O
N
F
L
I
C
T
S
)

5
0
.
n
s

1
.
6
0
0

v
s

3
.
2
0
0

0
.
0
5
0

u
s

0
.
1
0
0

1
.
8
6
0

u
s

3
.
5
1
0

1
.
9
8
0

s

3
.
5
2
2

1 1

2
.
5
0
8

u
s

4
.
0
5
0

2
.
7
1
6
u
s

4
.
2
5
8

4
.
3
1
6

u
s

7
.
4
5
8

1
0
0
.

2
0
0
.

6
.
4
0
0

0
.
2
0
0

6
.
8
1
0

6
.
8
2
2

1
7
.
3
5
0

7
.
5
0
8

1
3
.
9
0
8

3
0
0
.

9
.
6
0
0

0
.
3
0
0

1
0
.
1
1
0

1
0
.
1
2
2

1
1
0
.
6
5
0

1
0
.
8
5
8

2
0
.
4
5
8

4
0
0
.

1
2
.
8
0
0

0
.
4
0
0

1
3
.
4
1
0

1
3
.
4
2
2

1
1
3
.
9
5
0

1
4
.
1
5
8

2
6
.
9
5
8

IN
)

C
o
n
d
i
t
i
o
n
s
:

*

M
e
u
o
r
y

M
o
d
u
l
e

D
i
m
e
n
s
i
o
n
s
:

k

w
o
r
d
s

x

1
6

b
i
t
s

1
6

P
a
r
a
l
l
e
l

D
a
t
a

P
a
t
h
s

N
o

M
e
m
o
r
y

C
o
n
f
l
i
c
t
s

T
h
r
e
e

p
r
o
c
e
s
s
e
s

p
r
o
c
e
e
d

s
i
m
u
l
t
a
n
e
o
u
s
l
y
:

i
n
p
u
t

f
r
o
m

m
e
m
o
r
y
,

m
e
r
g
e
,

a
n
d

c
o
o
r
d
i
n
a
t
i
o
n

s
t
e
p

1
.

*
*
D
u
r
i
n
g

a
r
y

p
a
r
t
i
c
u
l
a
r

h
a
r
d
w
a
r
e

c
y
c
l
e
,

m
e
m
o
r
y

o
u
t
p
u
t

m
a
y

o
r

m
a
y

n
o
t

t
a
k
e

p
l
a
c
e
.

I
f

p
r
e
s
e
n
t
,

i
t

m
a
y

f
o
l
l
o
w

c
o
o
r
d
i
n
a
t
i
o
n

s
t
e
p

3
,

o
r

i
t
m
a
y

i
n
t
e
r
r
u
p
t

s
t
e
p

3
.

T
a
b
l
e

2
.
6
.

C
u
m
u
l
a
t
i
v
e

T
i
m
i
n
g

f
o
r

H
a
r
d
w
a
r
e

C
y
c
l
e

w
i
t
h

1
6

P
a
r
a
l
l
e
l

D
a
t
a

P
a
t
h
s

C
o
n
d
i
t
i
o
n
s
:

P
a
r
a
l
l
e
l

d
a
t
a

p
a
t
h
s
:

2
5
6

E
f
f
e
c
t
i
v
e

m
e
m
o
r
y

c
y
c
l
e
s
:

1
0
O
n
s

S
t
e
p

2

p
r
o
c
e
s
'
a
r
s
:

4

b
C

d
*

e
*

11
11

11
11

11
11

11
11

11
11

11
"I

L
.

\-
s,

1-
_

,1
1

iii
iii

IT
N

,
,

.
2

5
6

7
8

T
IM

E
 (

p.
$)

9

A
c
t
i
v
i
t
i
e
s
:

a
)

M
e
m
o
r
y

f
e
t
c
h
,

m
e
r
g
e
,

a
n
d

c
o
o
r
d
i
n
a
t
i
o
n

s
t
e
p

1

p
r
o
c
e
s
s
i
n
g

b
)

C
o
m
p
l
e
t
i
o
n

o
f

m
e
r
g
e

a
n
d

c
o
o
r
d
i
n
a
t
i
o
n

s
t
e
p

c
)

C
o
o
r
d
i
n
a
t
i
o
n

s
t
e
p

2

d
.

C
o
o
r
d
i
n
a
t
i
o
n

s
t
e
p

3

e
)

M
e
m
o
r
y

s
t
o
r
e

f
)

I
d
l
e

10
11

1
2

1
3

1
1
4

E
N
D

O
F

H
A
R
D
W
A
R
E

C
Y
C
L
E

D
u
r
i
n
g

a
n
y

p
a
r
t
i
c
u
l
a
r

h
a
r
d
w
a
r
e

c
y
c
l
e
,

m
e
m
o
r
y

o
u
t
p
u
t

m
a
y

o
r

m
a
y

n
o
t

o
c
c
u
r
.

I
f

p
r
e
s
e
n
t
,

i
t

m
a
y

f
o
l
l
o
w

c
o
o
r
d
i
n
a
t
i
o
n

s
t
e
p

3

o
r

i
t

m
a
y

i
n
t
e
r
r
u
p
t

s
t
e
p

3
.

F
i
g
u
r
e

2
.
1
1
.

T
i
m
e

D
i
s
t
r
i
b
u
t
i
o
n

f
o
r

H
a
r
d
w
a
r
e

A
c
t
i
v
i
t
i
e
s

i
n

t
h
e

S
t
a
n
d
a
r
d

S
y
s
t
e
m

44

Finally, it is important to note that memory activity associated

with a hardware cycle is concentrated near the beginning and the end of

that cycle. Therefore, as long as the 14 us time constraint is satisfied,

no memory conflicts between phases a and e can ever occur. The only con-

flicts which may arise involve either phase a or phase e and disk I/O.

Figure 2.11 is based on clock intervals of 10Ons for merge and

step 1, 33ns for step 2 and 13ns for step 3. Use of an 80 MHz clock with

its related frequencies as described in section 2.3.2.5 would increase the

total time for a hardware cycle to 13.29 us, which is still within the 14 us

limit.

So far in this analysis conflicts,among the four groups of memory

transfers which take place during a hardwaie cycle have been ignored. Figure

2.12 illustrates certain conflict situations and methods for controlling

them. Each time line in the figure represents one hardware cycle (13.89 us),

and each vertical spike marks the beginning of one, 100ns memory cycle used

for the indicated series of transfers. Processing times are based on data

for the "standard" system in Figure 2.10 and Table 2.5. The reference line

at. the bottom of Figure 2.12 -epresents disk I/O requirements for all cases

and is to be used separately with each of the other lines: a, b, c and d.

Figure 2.12(a) presents the same no-conflict situation as 1-igure

2.11. Disk accesses are spread uniformly throughout the cycle, and hardware

transfers are grouped together near the beginning and end. While hardware

input and output conflicts cannot occur if a strict 13.89 us time limit is

observed, other types of conflicts are nearly inevitable since, for example,

data being read from disk and data being transferred to hardware are

typically different sublists of the same postings file and therefore should

F
2
1
(
1
1
f
R
O
P
r
W
:
:
:
1
:
N
P
i
T
.
-
-
-
-
4
w
i

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

0
1

2
3

4

L
.
,

H
A
R
D
W
A
R
E

I
N
P
U
T

I

-

(
f
o
r

c
y
c
l
e

i
)

1
1
1
1

i
l
k
1
1
1
1

1
1
1

1
1
1

I
I
1
1

I
I
I

I
l
l

L
U
I

11
I

5
6

7
I 8

9

T
I
M
E

(

p
.
$
)

(
a
)

N
o

c
o
n
f
l
i
c
t
s

L
L
.
V
A
R
D
W
A
R
E
O
U
T
P
U
T
.
.
j

I
(
f
o
r

c
y
c
l
e

i
)

I

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

is
t

10
11

12
13

14
4

T
1

1
1

s

E
N

D
 O

F
H

A
R

D
W

A
R

E
C
Y
C
L
E

H
A
R
D
W
A
R
E

O
U
T
P
U
T

.
.
1

(
f
o
r

c
y
c
l
e

i
)

o
u
t
p
u
t

a
f
t
e
r

t
i
m
e

)1
1

11
1

11
1

11
11

14
II

I
11

10
11

 1
11

 i.
11

1
0

1
2

3
4

5
6

T
8

9
10

11
12

13
:1

4

T
IM

E
 (

p.
$)

E
N

D
O

F
H

A
R

D
W

A
R

E
C

Y
C

LE

(
b
)

N
o

b
u
f
f
e
r
s
.

P
o
s
s
i
b
l
e

c
o
n
f
l
i
c
t
s

b
e
t
w
e
e
n

i
n
p
u
t

d
a
t
a

s
t
r
e
a
m
s

a
n
d

b
e
t
w
e
e
n

o
u
t
p
u
t

d
a
t
a

s
t
r
e
a
m
s
.

D
I
S
K

R
E
A
D

-
-
-
1

D
I
S
K

W
R
I
T
E

I
1

1
1

0

1
1

2

1

4,
1

I
I

il
1

I
i

I
1

tij
I

III
I

I
1

I
I

I
1

8
9

12
13

:1
4

E
N

D
O
F

H
A
R
D
W
A
R
E

C
Y

C
LE

T
IM

E
 (

A
s)

R
E

F
E

R
E

N
C

E
: D

IS
K

 I/
O

 F
O

R
 A

LL
 C

A
S

E
S

M
E

M
O

R
Y

 C
Y

C
LE

: 1
00

 n
s. F
i
g
u
r
e

2
.
1
2
.

M
e
m
o
r
y

C
o
n
f
l
i
c
t

A
n
a
l
y
s
i
s

[
.
.

H
a
r
d
w
a
r
e

o
u
t
p
u
t

m
a
y

o
c
c
u
p
y

a
n
y
m
e
m
o
r
y

c
y
c
l
e
s

n
o
t

r
e
s
e
r
v
e
d

f
o
r

d
i
s
k

o
u
t
p
u
t

L
i
,

H
A
R
D
W
A
R
E

I
N
P
U
T

o
.
i

L
P
O
S
S
I
B
L
E

H
A
R
D
W
A
R
E

O
U
T
P
U
T

(
f
o
r

c
y
c
l
e

i
)

-

(
f
o
r

c
y
c
l
e

i
-
l
)

4
1
-
1

3
6

7
8

9
V
D

1
1

1
2

1
3

S
4

T
I
M
E

(
I
L
O

E
N
D

O
F

H
A
R
D
W
A
R
E

C
Y
C
L
E

(
c
)

O
n
e

b
u
f
f
e
r
,

a
t

h
a
r
d
w
a
r
e

o
u
t
p
u
t
.

P
o
s
s
i
b
l
e

c
o
n
f
l
i
c
t
s

b
e
t
w
e
e
n

i
n
p
u
t

d
a
t
a

s
t
r
e
a
m
s

a
n
d

b
e
t
w
e
e
n

o
u
t
p
u
t

d
a
t
a

s
t
r
e
a
m
s
.

H
a
r
d
w
a
r
e

o
u
t
p
u
t

m
a
y

o
c
c
u
p
y

a
n
y

m
e
m
o
r
y

c
y
c
l
e
s

n
o
t

r
e
s
e
r
v
e
d

f
o
r

d
i
s
k

o
u
t
p
u
t

H
A
R
D
W
A
R
E

I
N
P
U
T

m
.
1
.
.
.

P
O
S
S
I
B
L
E

H
A
R
D
W
A
R
E

O
U
T
P
U
T

i

(
f
o
r

c
y
c
l
e

i
)

(
f
o
r

c
y
c
l
e

1
-
1
)

1
1
1
1
1
0
1
1
1
1
1
1
R
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
4
1
J
1
1
1
1
1
1
1
1
1
M
1
1
1
1
1
1
1
1
1
1
4
1
1
1
1
1
i

0
1

2
3

4
5

6
7

8
9

10
It

12
13

!1
4

T
(
I
L
S
)

H
A
R
D
W
A
R
ER
E

C
Y
C
L
E

(
d
)

O
n
e

b
u
f
f
e
r
,

a
t

h
a
r
d
w
a
r
e

o
u
t
p
u
t
.

P
o
s
s
i
b
l
e

c
o
n
f
l
i
c
t
s

a
m
o
n
g

a
l
l

d
a
t
a

s
t
r
e
a
m
s
.

D
I
S
K

R
E
A
D

W
D
I
R
S
I
K
T
E
-

0

II
II

II
II

II
II

II
II

I1
U

11
10

11
11

1
11

11
11

1
W

W
1

2
3

4
5

6
7

8
9

T
IM

E
 (

p.
$)

1'
11

1'
 L

II
1
0

1
1

1
2

1
3

1
1
1
4

E
N
D

O
F

H
A
R
D
W
A
R
E

R
E

F
E

R
E

N
C

E
: D

IS
K

 I/
O

 F
O

R
 A

LL
 C

A
S

E
S

C
Y
C
L
E

M
E

M
O

R
Y

 C
Y

C
LE

 :
10

0
ns

.

F
i
g
u
r
e

2
.
1
2

(
c
o
n
t
i
n
u
e
d
)
.

M
e
m
o
r
y

C
o
n
f
l
i
c
t

A
n
a
l
y
s
i
s

47

require access to the same memory module. A similar relationship exists

between data transfers from hardware to memory and from memory to disk.

Suppose that the two input data streams do require access to the

same illemory module, i, and that the two output data streams require access

to some other module, j. This case is illustrated in Figure 3.12(b). Here,

disk transactions "steal" a number of memory cycles from the hardware input

process, delaying its completion by approximately 1 us. This delays com-

pletion of the hardware processing by the same amount; and another series

of conflicts in the output module causes the total time required for the

process to be 14.2 us, about 300ns more than the allowable time.

One solution for this problem is to insert buffers between the

memory and the hardware (points A or B or both in Figure 2.10) to spread

memory access requiremenzs more evenly throughout the operational cycle.

Each buffer used in this way increases the total time required to process

two lists by one hardware cycle, since, with a buffered input, each input

sublist reaches the merge network one cycle later than before, and simi-

larly at the output. Simulation experiments (Chapter 4) show that for a

complicated sample search, the use of buffers has very little effect upon

performance and, for any given set of starting conditions, may either

increase or decrease the total time required. When buffers are used,

Equation 2.1 becomes

t = i+j+w + 1+NB , (2.5)

where N
B

is the number of buffers employed in the hardware path.

Returning to the conflict situation defined above in which two

input data streams share one memory module and two output data streams share

r
tI

48

another, suppose that data from coordination step 3 were collected in a

buffer at Point B (Figure 2.10) and returned to memory at any convenient

time during the next hardware cycle. The effect would be to distribute

memory access requirements for hardware output over an entire cycle in-

stead of concentrating them near the end. As Figure 2.12(c) shows, all

timing requirements can be satisfied easily using this configuration.

Figure 2.12(d) illustrates the situation in which all data trans-

fers reference a single 100ns memory module. About half the memory cycles

are required for disk I/O; and, as a result, the hardware input phase re-

quires 6 us. During the next 5.9 us disk I/O continues, and the hardware

output from the previous cycle is returned to m:Jory. The entire cycle of

operation including all hardware-related memory transactions can be com-

pleted in 11.9 us. Again, only one buffer located at Point B of Figure

2.10 is needed.

If, instead of using a single memory module with a true 100ns

cycle, an effective 100ns cycle were achieved by interleaving four cheaper

400ns submodules, then it can be hown that it would still be possible to

satisfy the timing constraints with the aid of buffers at Points A and B

of Figure 2.10 and with very little performance degradation.

2.5 Summary

This chapter has described in d-tail the hardware requirements of

the proposed system. The operation of each of the hardware subsystems has

been defined and designs have been outlined for a comparison element (the

basic building block of the merge network) and for the various parts of the

coordination network. Other subsystems can be obtained from existing devices

either directly or through relatively minor modifications. Timing

49

constraints have been analyzed, and the interaction of the various components

during a typical cycle of operation has been discussed at length. The

effects and control of memory conflicts have also been evaluated.

It is concluded that hardware term coordination systems capable

of processing up to 256 items simultaneously can reasonably be built using

current technology.

50

3. BASIC ALGORITHMS

In order to operate the proposed hardware coordination system,

a number of procedural decisions are required. The system is intended for

operation in a large, on-line retrieval environment where frequently a

single search request may involve a large number of search terms and hence

require the manipulation of a large number of postings files. Further, the

number of entries in these files may vary radically from one file to an-

other and may be expected frequently to exceed the number of data paths in

the system and even the available memory. In the data base used as a model

for this study, for example, some terms index as few as one or two documents

while others index as many as half a million. As a result, procedures are

needed for insuring a proper sequence of inputs to the merge network, for

handling intermediate results in large searches, and for processinc, exces-

sively long lists. Problems of this type are considered in the present

chapter, and a brief description of the standard algorithms which have been

adopted for performance evaluation studies is presented. Variations exam-

ined in the interest of optimizing performance are discussed in Chapter 4.

It is beyond the scope of this report to specify explicit algorithms for

use by the control computer. Rather, it is assumed that the processing which

must be done there can be performed within the available time.

3.1 Sublist Sequencing

Consider the problem of processing two lists, each of which contains

more than n postings, where n is the number of data paths in the system. Each

of the two input lists may be divided into sublists of length n, and one new

sublist may be processed each cycle. The problem then becomes one of choosing

51

a proper sequence of sublists to assure the success of the overall merge.

Clearly, some sequences are not appropriate since, for example, one could

not normally process first all the sublists from one file and then all the

sublists from the other. During each hardware cycle, n new inputs are

introduced into the merge and the n smallest elements currently in the

system are released as finished results and become unavailable for further

sorting.

Refer now to Figure 3.1, where Lists 1 and 2 represent files to

be merged. Items in each file are assumed to be arranged in nondecreasing

order. Leta be the last n-element sublist processed from List 1, 0 the

last sublist from List 2, and y and 8 the next sublists available on Lists 1

and 2, respectively. The last elements on m, 0, y and 8 are a, b, e and f,

respectively; and c and d represent the leading items on lists y and (S.

Define: Nk +l = a list of n new inputs to the merge for cycle k+1.

F
k

= a list of n finished results, fi, from merge cycle k

< f141'
< i < n - 1)

R
k

= a list of n elements, ri, retained for further

processing after merge cycle k

(rk < rk
1

1 < i < n 1).i
Theorem: Proper sequencing of sublists is assured if, for every hardware

cycle, the next available sublist having the smaller leading

element is chosen. If the two leading elements are equal, either

sublist may be used.

N NEW
INPUTS

BEST COPY AVAILABLE

LIST 1

52

LIST 2

r - 1 r - - 1
t LAST INPUTS I I

I 1.--- PROCESSED "*"..'".111 I
I I I

I
or I 1 a._ 1

I i i
a I I

b IL. -.1 s., --- -J

C

e

1

2

n

n +1

NEXT INPUTS
AVAILABLE

(a) Sublists and Data Elements

n + 2

2n

MERGE
NETWORK

1

2
F RESULTS

n +1

n + 2

2n

(b) Merge Network Inputs and Outputs

Figure 3.1. Definitions for Sublist Sequence Discussion

FEEDBACK.
PESULTS

53

Proof: Consider the k
th

step of the merge.

R
k-1

merged with y or 6 Fk + Rk

The last element of R
k-1

is r
k-1

= max R
k-1

= a or b, say a.

Then a > b. Note also that c > a since List 1 is arranged in nondescending

order.

If d > c, then d > a and

R
k-1

merged with y -0 F
k
+ y, where F

k
= R

k-1
and R

k
= y

and R
k-1

merged with 6 -0 F
k

+ 6, where F
k
= R

k-1
and R

k
= S.

If, however, d < c, then the relationship between a and d is unknown and

R
k-1

must be merged with 6 so that any 6 < a may be included in F
k

.

An alternative rule which will produce an acceptable sequence and

which may be more convenient to apply in practice is based on comparison of

a and b rather than c and d. As each new sublist is entered into the system,

compare its largest (last) element with the largest item currently in the

system and update an indicator showing which file has given rise to the

current largest element. Then choose the next sublist from the other file.

3.2 Intermediate Results

When the length of the result of a particular search exceeds the

available space in memory a series of intermediate results must be stored

temporarily for later processing. In a given search, many but not all of

these intermediate results tend to be of comparable lengths (greater than

one memory load). It might seem appropriate to generate several such runs

on one pass, combine them in pairwise fashion on the next pass beginning

with whichever list becomes available first, and proceed in this fashion

54

until only one list remains. However, it has been found that this procedure

results in a large amount of idle time sr .nt waiting for the disk. Further-

more, if the number of intermediate results to be processed is odd, care

must be taken to avoid an "infinite loop" situation in which any particular

list serves alternately as a source on one rotation and a sink on the next.

(In the example of the previous chapter, Ll was a source and L2 was a sink.)

It has proved more effective to identify the longest list at the

beginning of a search and use it exclus:vely as a sink. Whenever the memory

fills above a certain threshold, processing is suspended until the longest

list becomes available, the contents of the memory are processed against the

longest list and the result is left on disk. Then normal processing is re-

sumed until the memory is full again.

3.3 List Spl.itting

It frequently becomes necessary to split a list into two sections,

read the first part, and leave the other for future use. This facility is

essential whenever it is necessary to process a source list which is too

large to fit the available memory; it may be used (sparingly) at other times

to improve performance by improving the utilization of the data memory. The

procedure can be implemented as a simple bookkeeping transaction in the con-

trol computer.

3.4 Special Requirements of OR, AND and NOT Processing

Most of the discussion up to this point has dealt explicitly or

implicitly with "OR" processing. From an operational point of view, no

substantial difference exists among the OR, AND and NOT procedures, but

certain details should be examined. For the remainder of this discussion

55

let Ll refer either to search term one or to its associated postings file,

and let xi be the number of document postings in that file. Let L2, 12, LR

and 2'r have corresponding definitions with respect to search term two and

the result of the coordination procedure at hand. Assume that
2.2

< xi.

For the search request

Ll OR L2 ,

<1<x+
1 r 1 2

The condition 2.r =
1

+
2'2

implies that no documents are common to both in-

put lists, and processing proceeds exactly as described in Chapter 2. How-

ever if 2'r <
1
+ z

2
then the smooth flow of results from the coordination

network through the memory and onto the disk will be interrupted from time

to time as it becomes necessary to wait for complete n-element sublists of

LR. If the results are destined for memory alone, this delay presents no

difficulty; but if they are to be written on disk, then "gaps" will appear

in the disk files. The problem can be controlled by storing information on

the disk to indicate which blocks contain valid data, or by supplying ap-

propriate accounting procedures in the control computer. It can be elimi-

nated by providing sufficient buffer space in memory to contain one complete

logical track (n physical tracks) of information. In practical retrieval

systems, the degree of overlap between any two pairs of postings files is

believed typically to be quite small, perhaps 2%, so that in most searches

only a few gaps might develop and a very small buffer would provide complete

protection. In the worst possible case ("1.1 OR LP) the density of infor-

mation in the output file cannot drop below 1/2 its normal value since the

result must contain at least xi postings (Q2 < xi < xr). Gaps in one

56

intermediate result may propagate to another, but this need not necessarily

occur.

and

For the two search requests

Ll AND L2,

Ll AND NOT L2,

the problem of gaps on the disk need never arise since LR is never longer

than Ll and hence the results of the search can be collected in memory until

the procedure is complete. If the search involves very long input files,

asigger, it may be necessary for the control computer to conduct these
0104

searches in several phases. Consider the search "Ll AND L2" in which

£2 it
1'

but t
2

still contains km postings, where m represents the available

memory space. L2 must be divided into k sections, L21, L22, ..., L2k, each

of the length m. The search may then be conducted in k+1 phases to form

the desired LR:

LR1 = L2
1
AND Ll

LR
2

= L2
2
AND Ll

. . .

. .

LR
k
= L2

k
AND Ll

LR = LR OR LR2 OR oR Lit
1 2 k

A similar procedure is required to perform the search "Ll AND NOT

L2" when Ll is too long for the available space.

57

3.5 Processing Algorithms for the Experimental System

For experimental purposes, a number of searcn simulations have

been performed using a collection of standard procedures and parameters.

This section describes these standard elements; Chapter 4 describes specific

test conditions and presents results. As in other parts of this report,

the term "merge" will often be used to refer to the complete hardware merge

and coordination procedure.

3.5.1 Overview

Consider a search request 'ing the disjunction of several

terms, and let the longest of the associated postings files be designated

File S. Processing begins as soon as the disk addresses of the required

files are determined. With the exception of File S, postings lists are

accumulated in memory as they are encountered on the disk; merging is

initiated whenever two lists are available and the merge system is free.

When free memory drops below a specified threshold, t, further accumulation

is suspended until some core is released or until the present contents are

fully processed, coordinated with File S, and left on disk. Then normal

processing is resumed.

3.5.2 List Selection

When a list other than File S is encountered on the disk it may

be read into core, rejected or split. Normally it will be read in its

entirety. A list may be rejected only when the required transmission

facilities are busy (e.g., another list is being read) or when memory is

58

filled above the threshold level of (100-t)%.1 A list rejected on one

rotation is reconsidered on each succeeding rotation until it is finally

processed. If at least t% of the total memory is free but the new list is

still too long to fit the available space, then the list is split into two

sections, A and B. Part A, which just fills the available space, is read

immediately; the remainder of the list, Part B, is left for another ro-

tation.

3.5.3 Merge Initiation

Merging is initiated whenever the merge system is free and any

two lists are available. A list is considered available when either a)

it is completely contained in core, or b) its first block is encountered

on the disk. A list in the process of transmission from disk to core does

not become available until after that transmission is complete. If a

choice exists among more than two lists, the two shortest are selected for

processing. Thus an attempt is made on a local basis to optimize the merge

and coordination procedure. It can be shown [13,14] that merge time would

be minimized if all lists were available initially and if the shortest two

remaining lists were chosen for each new processing cycle. In the present

context, minimizing the use of the merge system is not equivalent to

minimizing the total elapsed time for a search; nevertheless, a strong

interdependence between the two has been observed.

1One additional restriction in the present implementation can cause rejection:
no more than 20 files for any yiven search may exist in core at one time.

This limit is occasionally rea:hed.

14-06..4110.
59

3.5.4 File S Processing

The longest file in a search is designated from the beginning as

the sink and is used to collect and coordinate intermediate results. This

list is accepted for processing only when no other lists remain on disk or

when the memory is nearly full and must be cleared to make room for other

files.

Certain other conditions must also be satisfied before File S

can be processed, namely, all the required transmission facilities (input

and output channels) must be free, the merge system must be idle, and

adequate space must be available on some disk to receive the output. If

any of these conditions fails, processing is deferred until the situation

can be corrected.

As the simulation is presently implemented, the merge network is

assigned whenever two lists are ready for merging, and merge processing is

nut interrupted before its completion. File S, however, cannot be proces-

sed unless the merge system is free. As a result, when the memory gets full,

all files in core are combined into a single long intermediate result before

File S is processed. During this period of consolidation, memory space can

be released as unwanted data items are eliminated. If as a result of this

process, the amount of free memory rises above the threshold value, new in-

puts can again be accepted from the disk. There is reason to believe that

these policies leads to inefficiencies and that further algorithmic refine-

ments are in order. See section 4.4.

3.5.5 Result Processing

All results are retained in core except those which involve File

S and which therefore are left on disk. Results retained in core become

60

available for further processing; those on disk constitute a new "longest

list".

In a practical retrieval system, the length of the file which

results from a particular coordination procedure depends upon the operation

being performed and upon the number of postings which are common to the two

input lists. In order to simulate the effects of element duplication, an

overlap factor, ci, has been associated with each term, i. This factor

reflects the extent to which term i indexes documents in common with other

terms of interest. Using the notation of section 3.4, the length and over-

lap factor for the output file from the search "Li OR L2" are given by

where

k
r

k
1
+ (1-C

m
)k
22

cr = Cl

£1 2) £2 and cm = max(ci,c2).

Corresponding equations for AND and NOT processing are not useii

in the present study. If this rule is applied repeatedly in a search in-

volving many terms, the length of the final result dcpends upon the order

in which the terms are processed. Experimentally, this has not proved to

be a serious problem: the result length from trial to trial has been found

to deviate from the overall mean value by only a few percentage points.

3.5.6 Standard Parameters

Disk-related parameters used throughout this study are those shown

in Table 2.2. In addition, standard values of 10% for the overlap factor

and 10% for the memory threshold have been adopted. A merge is assumed to

require £1 + £2 + 1 hardware cycles to complete.

61

3.6 Example

The unified operation of the procedures discussed in this chapter

is best described by means of an example. Suppose a search request has

been received for any document indexed by one or more of eleven specified

terms. Table 3.1 shows the number of documents posted to each term and also

the time interval after the start of the search during which each file will

first be available. A standard merge system with 16 parallel data paths

and a 6K word memory has been assumed. Table 3.2 lists the important events

which occur during the progress of the search. Many of the essential time

relationships are illustrated graphically in Figure 3.2. For each of the

three rotations required to process this request, the figure shows the

initial arrangement (in time) of data on the disk and the distribution of

merge activity during the period. Element heights in Figure 3.2 are not

significant but have been chosen merely to differentiate between adjacent

or overlapping activities.

During the first rotation all but three and part of a fourth of

eleven original lists are processed, and the merge network is occupied for

16.3 out of 25ms. The remainder of the process requires about 1-1/2 addi-

tional rotations and 23.8ms of additional merge time.

62

Start Address End Address

Term Postings (ms. past reference) (ms. past reference)

Ll 1976 0.500 2.222

L2 (File S) 2384 5.014 7.084

L3 199 5.167 5.347

L4 292 6.875 7.139

L5 750 12.236 12.889

L6 1680 12.570 14.028

L7 1600 15.556 16.945

L8 220 17.222 17.417

L9 100 17.431 17.528

L10 1414 21.445 22.681

(MA 1280 21.445 22.556)

(L108 134 22.556 22.681)

Lll 156 21.806 21.945

Table 3.1. Definition of Sample Search

Time (ms.

past reference)

0.000

0.500

5.014

5.167

6.875

7.084

7.139

9.292

12.236

12.570

15.014

15.556

17.222

17.431

19.653

19.653

19.959

19.959

21.445

21.806

22.556

22.556

63

Event

Start of search

Read Ll

Skip L2 (File S)

Read L3 and start merge (L1 and L3)

Read L4 and hold in core

End merge: result = T1 (2155 postings)

End read L4 and start merge (Ti and L4)

End merge: result = T2 (2417 postings)

Read L5 and start merge (T2 and L5)

Skip L6 (Read channel busy)

End merge: result = T3 (3092 postings)

Read L7 and start merge (T3 and L7)

Read L8 and hold in core

Read L9 and hold in core

End merge: result = T4 (4532 postings)

Start merge (L8 and L9)

End merge: result = T5 (310 postings)

Start merge (T4 and T5)

Split L10. Read L1OA and hold in core

Skip L11 (Read channel busy)

End Read L1OA

Skip MOB (Memory full)

Table 3.2. Progress of Sample Search

Time (ms.

past reference)

24.195

24.195

25.000

29.500

30.014

37.278

37.292

37.570

46.806

47.556

48.417

48.417

50.000

50.139

55.052

63.792

63.806

64

Event

End merge: result = T6 (4811 postings)

Start merge (T6 and L10A)

End of Rotation 1

End merge: result T7 (5963 postings)

Read L2 and start merge (T7 and L2)

End merge: result = *R1 (on disk) (8108 postings)

End write *R1

Read L6

Read Lil and start merge (L6 and Lil)

Read L1OB

End merge: result = T8 (1820 postings)

Start merge (T8 and 11013)

End of Rotation 2

End merge: result T9 (1940 postings)

Read *R1 and start merge (T9 and *R1)

End merge: result = *R2 (on disk) (9854 postings)

End write *R2. End of search.

Table 3.2 (continued). Progress of Sample Search

BEST COPY AVAILABLE

5 10

t
25 30

as

25
it

65

110 is
TIME (ms)

DISK LAYOUT

I
20 I 25

i I
) 1 It

lb 15 20

TIME (ms)
MERGE ACTIVITY

(a) First Rotation

I 35 410
t

145 50

25

TIME (ms)
DISK LAYOUT

I
315 alo 45

i
50

TIME (ms)
MERGE ACTIVITY

(b) Second Rotation

S

50 55 60 65 70
TIME (ms)

DISK LAYOUT

75

jli i I
1

50 55 60 65 70 75

TIME (ms)
MERGE ACTIVITY

(c) Third Rotation

Figure 3.2. Processing Example: "OR" Eleven Terms

66

4. PERFORMANCE

4.1 Preliminaries

The goal of the performance studies reported in this chapter is

to assess the capabilities of the new system operating in a realistic re-

trieval environment. To this end, sample searches have been selected from

the full MEDLARS Master MESH as of November, 1972, [15] with the aid of [3]

and other data obtained partly from the National Library of Medicine de-

scribing the MEDLARS and MEDLINE retrieval systems. Any errors in inter-

preting this information, of course, lie entirely with the author of this

report.

While characteristics of the MEDLARS data base have been used to

add realism to these tests, the simulated system differs in certain regards

from both MEDLARS and MEDLINE and is not intended to be a direct representa-

tion of either one.

The Master MESH is a listing of the complete Medical Subject Head-

ings (MESH) Index together with a tally of the documents indexed under each

term. The MESH index language is a carefully controlled, hierarchically

structured vocabulary of over 8500 terms employed by professional indexers

to classify technical articles from 2200 journals. The data base used in

this study contains over 1,000,000 citations dat;ng frnm January 1964 to

November 1972. Individual terms reference from one t ,early 500,000

documents. It is interesting to note that the data b for MEDLINE, the

on-line version of this :Jrvice, currently contains about 450,000 citations

and is limited in coverage to approximately the most recent three years.

This restriction is necessary in part because of the prohibitively long

search times required to process the larger data base in an on-line, real

67

time environment and still provide adequately fast response for a large and

growing number of users.

The search language employed in the MEDLARS system permits the

retrieval of all documents indexed under one or more terms joined by the

logical connectives "AND", "OR", and "AND NOT" in a standard way. Several

techniques exist for modifying the basic search pattern, and one--the

explosion--is of special interest here. The request EXPLODE (TERM) is a

shortcut for searching simultaneously a general term and all of its sub-

ordinates in the hierarchy. It accomplishes the same objective as ORing

all terms with the same classification number. More than one EXPLODE can

be included in a search statement, and such requests can result in searches

involving a very large number of terms and a large amount of processing time.

The primary example used in these studies is the moderately long

search,

EXPLODE (CENTRAL NERVOUS SYSTEM),

which involves the coordination of 70 terms having a combined total of

67,527 document postings (see Table 4.1). A shorter search,

PARALYSIS OR PARAPLEGIA OR QUADRIPLEGIA,

(Table 4.2) is mentioned occasionally for comparison. Currently, short

searches occur more frequently than longer ones although both are common.

However, as data bases expand and user communities grow, demands on a re-

trieval system increase. This analysis is oriented toward the longer search

because it provides a better description of the system's performance under

heavy load.

68

Term
Documents
Referenced

CENTRAL NERVOUS SYSTEM 2976

BRAIN 16277

BRAIN STEM 1680

MEDULLA OBLONGATA 1125

OLIVARY NUCLEUS 199

PONS 750

CEREBELLOPONTILE ANGLE 156

VESTIBULAR NUCLEI 292

RETICULAR FORMATION 1254

CEREBELLUM 2000

DIENCEPHALON. 812

HvoOTHALAMUS 4931

HYPOTHALAMO-HYPOPHYSEAL SYSTEM 1440

MAMMILLARY BODIES 24

THALAMUS 1737

GENICULATE BODIES 845

THALAMIC NUCLEI 395

MESENCEPHALON 1471

CORPORA QUADRIGEMINA 403

INFERIOR COLLICULUS 93

OPTIC LOBE 226

SUPERIOR COLLICULUS 171

RED NUCLEUS 186

SUBSTANTIA NIGRA 294

TELENCEPHALON 434

CEREBRAL CORTEX 6877

CORPUS CALLOSUM 472

FRONTAL LOBE 818

GYRUS CINGULI 106

MOTOR CORTEX 313

OCCIPITAL LOBE 553

VISUAL CORTEX 1448

PARIETAL LOBE 398

Table 4.1. Data for Long Search [15]

69

Term
Documents
Referenced

SOMATOSENSORY CORTEX 281

TEMPORAL LOBE 619

AUDITORY CORTEX 502

HIPPOCAMPUS 1515

AMYGDALOID BODY 526

LIMBIC SYSTEM 1077

CEREBRAL VENTRICLES 1655

CEREBRAL AQUEDUCT 35

CHOROID PLEXUS 363

CISTERNA MAGNA 172

EPENDYMA 338

MENINGES 344

ARACHNOID 243

SUBARACHNOID SPACE 305

DURA MATER 513

PIA MATER 145

NEURAL ANALYZERS 257

SPINAL CORD 3773

CAUDA EQUINA 195

EXTRAPYPAMIDAL TRACT 294

PYRAMIDAL TRACTS 376

SPINOTHALAMIC TRACTS 28

ANTERIOR HORN CELLS 170

AUDITORY PATHWAYS 102

CRANIAL FOSSA, POSTERIOR 234

TEGMENTUM MESENCEPHALI 48

VISUAL PATHWAYS 257

LISSAUER'S TRACT 4

NEURAL INTERCONNECTIONS 900

POSTERIOR COLUMNS 4

RESPIRATORY CENTER 211

CEREBELLAR CORTEX 588

CEREBELLAR NUCLEI 126

CORPUS STRIATUM 72

Table 4.1 (continued). Data for Long Search [15]

70

Term
Documents
Referenced

SEPTAL NUCLEI 9

OLFACTORY BULB 75

OLFACTORY PATHWAYS 15

Total 67527

Average 965

Table 4.1 (continued). Data for Long Search [15]

PARALYSIS 2026

PARAPLEGIA 1033

QUADRIPLEGIA 374

Total 3433

Average 1144

Table 4.2. Data for Short Search [15]

71

The experimental procedure has been to generate a series of

performance curves showing the average time required to perform a search

under various conditions using various system configurations. Every point

plotted explicitly represents the average of results from 30 trials where

each trial involves a complete simulation of the search in question, be-

ginning with the random assignment of a disk address to each data file and

the random choice of an initial rotational position. Coordination proceeds

according to the algorithms in the previous chapter under the control of a

supervisory program which allocates system resources, performs the initial

address assignments and collects performance data. Whenever multiple,

independent searches are conducted simultaneously, each term in each search

receives a separate disk address; and the coordinatton algorithms are

applied to each search independently. Thus, if two of the long searches

defined in Table 4.1 are processed in parallel, it is as if two users had

requested searches having identical parameters but entirely different index

terms. Independent searches compete for limited system resources such as

memory space, the merge network and the I/O facilities.

The monitor program controls the progress of a simulation by main-

taining a time-ordered queue listing all events of interest to the system.

These include the access times for all files to be processed and the sched-

uled completion times for all I/O and merge procedures in progress. This

routine can refuse any request for service if the required facilities are in

use or if other conflicts arise. In this event, the postings file in ques-

tion is considered again on the next rotation.

System configurations examined in these tests include 1, 16, 32,

64, 128, 256 and 512 parallel data paths and standard memory sizes of 4K,

8K, 16K, 32K, 40K, 50K, and 64K words (K=1024). Other memory sizes have

72

been used under special circumstances as noted in the text. Three con-

figurations receive particular attention: in the remainder of this report

the terms Thrge", "small" and "conventional" are used to describe systems

having 256, 16 and 1 data path, respectively. As mentioned previously, a

system with 256 parallel paths is the largest considered technologically

feasible at the present time. A sixteen-path system performs well and

should be relatively cheap and easy to build and maintain. The use of a

one-path system to represent a conventional machine is somewhat arbitrary,

but it is believed to be a conservative choice for the following reasons.

Consider a conventional movable head disk with a 25ms rotation

time, a 60ms average track access time and a track capacity of 1800 words.

Thirty-seven and one-half rotations, or approximately 0.94 seconds, are

needed to transfer the data required for this problem. If the seventy

files are located randomly on the disk, then, on the average, additional

penalties of 0.88 seconds for latency and 4.2 seconds for head motion are

required to access the data. Finally, on the basis of published execution

times for a large general purpose computer1 and a short segment of code

written to perform the term coordination function on this machine, it is

estimated that approximately six microseconds of processing time per data

element are required to perform this task. At that rate, 2.3 seconds of

CPU time are required to merge 64 lists of 1000 items each using an

optimal 2-way merge. Adding these times yields a rough estimate of 8.32

seconds for a conventional machine to perform this search. No allowance

is made for interruptions other than disk I/O, and a memory adequate to

1

IBM 360/75 with four-way interleaved memory and IBM 2314 A-series disks.

73

hold all data is assumed. The corresponding figure from simulation of the

one-path hardware merge system is 4.23 seconds. With a memory restricted

to 4K words, the time for the one-path system is 9.47 seconds. Thus it is

felt that the one-path simulation produces a time estimate which is com-

parable with but generally shorter tha.-. the processing time that would be

required by a conventional computer with the same size memory.

4.2 MonoProgrammed Results

4.2.1 Basic Tests

Figure 4.1 contains the primary experimental result of this paper:

a description of the time required to process a long search using hardware

systems and data memories of various sizes under the standard conditions

defined in Chapter 3. Presentation of the actual merge times associated

with these trials is deferred until section 4.5 since those curves require

some special interpretation. Since the longest file is never retained in

core, a 64K word memory is sufficient to contain all the data which must be

processed internally for the long sample search: no further increase in

memory capacity can affect the results.

Figure 4.1 includes all the configurations discussed in the

previous section except the conventional system, whose performance curve

lies beyond the range of the graph. Data for that system appears under the

headings "Conventional System" and "Mean" in Table 4.3, which also contains

average values for the small and large parallel systems. The remaining

columns in the table show the standard deviations for the various samples

and the corresponding 95% confidence intervals, assuming that use of the

Central Limit Theorem is justified. With a probability of 95%, every point

BEST COPY AVAILABLE

1000 -

900 -

800

700 .

600

500

400

300 .

200

100 .

10K

74

SEARCH: ONE 70- TERM "OR"
CONDITIONS: STANDARD

20K 30K 40K 50 K

MEMORY SIZE
(WORDS; Kt:(024)

GOK

16 PATHS

32 PATHS

64 PATHS
-128 PATHS
''*---256 PATHS
"512 PATHS

70K

Figure 4.1. Basic Performance Analysis

M
e
m
o
r
y

S
i
z
e

(
W
o
-
d

C
o
n
v
e
n
t
i
o
n
a
l

(
O
n
e

d
a
t
a

p
a
t
h
)

S
t
d
.

D
e
v
.

S
y
s
t
e
m
-
0
.
-

9
5
%

C
o
n
f
i
d
e
n
c
e

I
n
t
e
r
v
a
l

f
o
r

M
e
a
n

S
m
a
l
l

P
a
r
a
l
l
e
l

(
1
6

d
a
t
a

p
a
t
h
s
)

S
t
d
.

D
e
v
.

S
y
s
t
e
m
-
-
-

9
5
%

C
o
n
f
i
d
e
n
c
e

I
n
t
e
r
v
a
l

f
o
r

M
e
a
n

P
a
r
a
l
l
e
l

d
a
t
a

p
a
t
h
s
)

S
t
d

D
e
v
.

S
y
s
t
e
m
-
-
-
0
.
-

9
5
%

C
o
n
f
i
d
e
n
c
e

I
n
t
e
r
v
a
l

f
o
r

M
e
a
n

M
e
a
n

:

1

M
e
a
n

L
a
r
g
e

(
2
5
6

M
e
a
n

4
K

9
4
7
2
.
7
2
m
s

1
0
2
.
0
6
m
s

±

3
8
.
0
7
m
s

8
3
3
.
0
9
m
s

3
6
.
7
7
m
s

±
1
3
.
7
2
m
s

3
5
7
.
9
3
m
s

2
8
.
4
0
m
s

±
1
0
.
5
9
m
s

8
K

6
5
0
6
.
1
3

3
8
1
.
0
7

±
1
4
.
1
4

5
5
9
.
2
2

3
7
.
8
3

±
1
4
.
1
1

'
2
1
5
.
5
9

2
3
.
4
8

t

8
.
7
6

1
6
K

5
1
1
5
.
6
6

2
8
3
.
3
5

±
1
0
5
.
6
9

4
2
6
.
9
1

3
6
.
9
7

±
1
3
.
7
9

1
3
5
.
6
1

2
0
.
6
4

±

7
.
7
0

3
2
K

5
0
8
6
.
7
2

2
7
8
.
1
2

±
1
0
3
.
7
4

4
1
0
.
5
5

3
8
.
2
0

±
1
4
.
2
5
.

9
4
.
2
1

1
5
.
0
8

±

5
.
6
3

4
0
K

5
6
3
7
.
7
1

5
1
3
.
5
3

±
1
9
1
.
5
5

4
4
2
.
5
8

4
0
.
4
8

±
1
5
.
1
0

9
5
.
0
0

1
4
.
7
7

±

5
.
5
1

5
0
K

4
3
6
5
.
3
3

1
1
9
.
9
3

±

4
4
.
7
4

3
0
2
.
9
3

1
1
.
4
5

±

4
.
2
7

6
9
.
9
2

1
1
.
8
6

±

4
.
4
2

6
4
K

4
2
3
1
.
0
9

4
0
.
9
9

±

1
5
.
2
9

3
0
0
.
8
8

1
1
.
8
3

±

4
.
4
1

6
8
.
1
0

9
.
9
6

±

3
.
7
2

T
a
b
l
e

4
.
3
.

L
o
n
g

S
e
a
r
c
h

P
e
r
f
o
r
m
a
n
c
e

f
o
r

T
h
r
e
e

S
t
a
n
d
a
r
d

S
y
s
t
e
m
s

(7
1

76

plotted for the large and small parallel systems lies within 15.1ms of the

true average value. In most cases the interval is actually much smaller.

For the conventional system, the confidence interval extends as far as

t192ms from the calculated average value, a deviation of less than 3.5%

from the mean.

Ignore, for now, the local maximum which the performance curves

exhibit around 40K words and consider the performance potential these results

represent. Table 4.4 shows the speed-up which can be achieved by the

various systems relative to the assumed conventional machine. For a small

system, the speed-up is roughly a factor of 12 at all memory sizes; for a

large system, the factor varies from 26.46 with a 4K memory to approximately

62 with a memory of 50K words or more. In absolute terms, the large system

can coordinate 70 files containing a total of over 67,000 postings in an

average time equivalent to about 2-1/2 disk rotations.

In this test, the large system outperforms the small one by a

factor which ranges approximately from 2.5 to 4.5--a small improvement con-

sidering the additional cost, complexity and bandwidth involved. The

reason is that this search does not represent a very heavy load for these

machines, especially the larger one. A greater separation can be seen in

some of the data base size experiments to be presented in the next section.

For comparison, Table 4.5 presents results achieved in processing

the short, three-term, sample search. All figures in the table represent

system configurations having sufficient memory to hold all data files. In

processing a single search of this magnitude, the parallel systems out-

perform the conventional system by a factor of only about 3, and there is

very litt difference between the two parallel. systems. When 10 Independent

M
e
m
o
r
y

S
i
z
e

(
w
o
r
d
s
)

1
6
-
P
a
t
h

(
"
S
m
a
l
l

S
y
s
t
e
m
"
)

3
2
-
P
a
t
h

6
4
-
P
a
t
h

1
2
8
-
P
a
t
h

2
5
6
-
P
a
t
h

(
"
L
a
r
g
e

S
y
s
t
e
m

"
)

5
1
2
-
P
a
t
h

4
K

1
1
.
3
7

1
6
.
4
9

2
1
.
3
4

2
4
.
5
6

2
6
.
4
6

2
7
.
9
6

8
K

1
1
.
6
3

1
7
.
4
6

2
2
.
6
0

2
7
.
0
4

3
0
.
1
8

3
3
.
9
1

1
6
K

1
1
.
9
8

1
9
.
5
0

2
4
.
7
1

3
1
.
5
7

3
7
.
7
2

3
8
.
0
6

3
2
K

1
2
.
3
9

2
1
.
1
4

3
0
.
5
9

4
2
.
1
9

5
3
.
9
9

6
3
.
8
1

4
0
K

1
2
.
7
4

2
1
.
5
4

3
5
.
3
0

4
8
.
6
8

5
9
.
3
4

6
9
.
5
8

5
0
K

1
4
.
4
1

2
4
.
9
2

3
7
.
7
6

5
3
.
6
7

6
2
.
4
3

7
6
.
7
6

6
4
K

1
4
.
0
6

2
4
.
1
8

3
7
.
3
7

4
9
.
3
3

6
2
.
1
3

7
0
.
8
0

T
a
b
l
e

4
.
4
.

S
p
e
e
d

I
m
p
r
o
v
e
m
e
n
t

F
a
c
t
o
r
s

R
e
l
a
t
i
v
e

t
o

C
o
n
v
e
n
t
i
o
n
a
l

P
r
o
c
e
s
s
o
r

78

BFST CTPY AVAILABLE

Search
Conventional

V.Item

Small Parallel
System

Large Parallel
System

One Short Sample
L

102 92ms 34 19ms 30 42ms

Ten Simultaneous
Short Samples 807.38 125.44 55.49

Table 4.5. Elapsed Time for Short Sample Search

79

short searches are processed simultaneously, performance differentials

became more apparent; and improvement factors over the conventional machine

range from 6.4 for the small system to 14.6 for the large one.

4.2.2 Data Base Expansion

One major concern in the design of any information retrieval

system is its potential for growth: how rapidly will performance degrade

as the data base expands? To answer this questions the same 70 term sample

search was used, but the lengths of all the postings files were multiplied

by factors of 1/4, 2 and 4; and new curves were generated for these modi-

fled data bases. Results are shown in Figures 4.2(a) and 4.2(b) for the

small and large systems, respectively. Only one point (30 trials), which

does not appear in the figures, was obtained for the conventional system

because of the prohibitively high cost of simulating this configuration.

Its average processing time is 16.81 sec. for the 4X expansion with a 220K

word memory. This is slower than the corresponding small parallel syQtem

by a factor of 15.4 and slower than the large system by a factor of 160.7.

For reasons to be discussed in section 4.2.3, it is considered

valid to compare these systems at the points where minima occur in the

performance curves: 50K, 100K and >200K memory sizes. Figure 4.3 shows

the average elapsed time for the search as a function of data base size

and memory size for two parallel configurations. In both cases, the large-

memory curves are very nearly linear while the 50K curves show an increasing

slope with increasing data base size. This effect, which reflects degraded

performance under heavy load, is much more pronounced for the small system

than the large one. Considering the best performance available from both

systems, a four-fold increase in the data base size (from X to 4X) increases

3800

3000

1500

BEST COPY AVAILABLE
80

SEARCH: ONE 70 TERM "OR"

PARAMETER ON CURVE:
DATA SASE EXPANSION /ACTON

(XiSTANDAND)

4X

2X

20K 40X SOX SOX 100X 120K 140K MX

MEMORY SIZE
(WORDS; K :1024)

NON

Figure 4.2. Effects of Data Base Expansion

2004

700

600

1;
.... 500

p 400

O
300

a.
ca

ct
uj 200

100

BEST COPY AVAILABLE

81

SEARCH: ONE 70 - TERM "OR"
PARAMETER ON CURVE:

DATA BASE EXPANSION FACTOR
(X = STANDARD)

20K 40K 50K 80A LOOK 120K 140K 160K 180K

MEMORY SIZE
(WORDS; K=1024)

(b) For Large System

4 .ftwommAmmwomm

200X 220K

Figure 4.2 (continued). Effects of Data Base Expansion

1600

1400

1200

2 1000

w
cn

G00

400

200

82

BEST COPY AVAILABLE

MEMORY

50K

100 K
16

PATHS

>200K

MEMORY

50X 256
WOK PATHS>200K1

X4 X 2X 3X

RELATIVE DATA BASE SIZE
4X

Figure 4.3. Comparison of Small and Large Systems
with Expanded Data Bases

83

the response time for the small system by a factor of 3.6 (to about 1.0

second) and that of the large system by a factor of only 1.3 (to about

0.1 second). Evidently there is room in the large system for considerably

more than a four-fold expansion in the assumed adta base before response

times on the order of a few seconds will be encountered.

4.2.3 Discussion of Performance Curves

All the performance curves presented thus far have exhibited

certain common characteristics. For small memories, processing time de-

creases rapidly with increasing memory size up to a certain point. For

large memories--large enough to hold all the files to be coordinated except

File S--processing time reaches a constant minimum value. Between these two

extremes a peculiar but very consistent system of oscillations occurs. These

oscillations are a direct result of the necessity to alternately fill the

memory with new data and then combine the resulting intermediate list with

the output file on disk.

Consider again the 4X data base performance curves presented in

Figures 4.2(a) and 4.2(b), shown together for conver.ience in Figure 4.4.

The curve for the small system contains sharply defined minima at 50, 70,

100 and 210K, with distinct peaks at 60, 90 and 170K words. The curve for

the large system contains a series of "plateaus" extending from 40-60K,

70-90K, 100-170K and upwards from 200K. Here the divisions are not as well

defined as on the other curve because the peak-to-peak variation is much

smallu. Nevertheless, the curve is clearly divided into several regions,

and the region boundaries correspond closely to the minima on the first

curve. Each of these regions corresponds to a different number of repeti-

tions of the memory filling and clearing cycle.

3500

3000

2500

E 2000

a

1500

1000

500

BEST COPY AVAILABLE 84

SEARCH: ONE 70- TERM nOR"

4 X DATA RASE

!6 -PATHS

e%°'..&...
* 256- PATHS

20K 40K 60K 60K 100K 120K 140K 160K WOK 200K 220K

MEMORY SIZE
(WORDS; K =1024)

Figure 4.4. Comparison of Large and Small System Performance
with 4X Data Base

85

Under the list selection algorithms defined previously, there

exists some critical memory size, M1, above which it is always possible

to perform this search by filling the memory and processing the longest list

only once. Similarly, there exist other values M2, M3, ..., above which the

longest list need be processed no more than twice, three times, etc. These

critical values are located approximately at the minma on the performance

curve. Similarly, there exists a second iet of critical memory sizes

N1, N2, ..., Nal., etc., below which it is never possible to complete the

search by processing the longest list 1, 2, j times. These points

correspond to the maxima on the performance curves.

Processing the longest list is a significant event in this system

because it requires an unusually long merge (involving all the data in

memory and all the postings on the cL ent longest list), and it also

entails a disk latency penalty of one-half rotation on the average. During4

all this time, no other list collection or processing can proceed.

From the carves in Figure 4.4, M1 for the sample search lies

around 210K. If so, one would expect to find M2 near M1/2 4 105K, M3 at

M1 /3 = 70K, M
4

near M
1
/4 = 52.5K, etc. In fact, these are the observed

locations of other minima on the curves.
2

As the memory decreases further

in size, the critical points lie closer and closer together, the peaks tend

to become smaller, and the curves rise very steaply.

2
No data exists at 105K; minimum occurs at 100K.

86

Other performance curves behave in a similar fashion. Thus, in

Figure 4.1, all curves exhibit a local maximum at 40K (except the 64 and

128 path systems, which never quite reverse their direction), and all reach

their final minimum values at 50K. In Figures 4.2(a) and 4.2(b), only the

4X curves have critical points (minima) near 70K; the 2X and 4X cuilies both

have critical points at 100K and 50K; and the X curve has critical points

near 50K and 30K.- The 2X curve may also contain a minimum between 10K and

30K, but the sampling interval is tuo large to show this clearly. These

results are all consistent with the present theory.

Between points Ni and Mi there is a transition region in which it

is sometimes necessary to process the longest list i times and sometimes

1+1. In this area, performance improves rapidly with increasing memory

size. Between the points Mi and Ni..1 there is a larger region where the

long list cycle is always repeated i times, but where larger memories may

be less effective than smaller ones. This results from the interaction of

several phenomena, most of which cannot be observed consistently to favor

one memory or another. On the average, however, their combined effect is

to discriminate against larger memories.

First, it takes longer to fill a large memory initially than a

smaller one. Then, too, it takes longer with a large memory to process

the last few sublists in core because these lists tend to be longer than

they would be in a smaller memory. If, as the algorithms now stand, in the

course of this final processing, the amount of free core rises above a

certain level, a few new, relatively short lists may be read. They have

to be incorporated with the long lists which are already there, a process

which again favors a smaller memory. This threshold crossing can occur

87

several times, and it yields very little of value in exchange for the

processing time it requires.3 Processing the long list itself often takes

longer with a large memory than with a smaller one because the processing

time is proportional to the total number of data items which enter into

the merge. Finally, during the last cycle of activity, the system with a

larger memory tends to finish faster than one with a smaller memory because

less data remains to be processed. This advantage Of the large- memory

configuration, however, isInot sufficient to compensate for its several

disadvantages.

This analysis of the performance curve may be useful in planning

memory allocation procedures for processing multiple simultaneous searches.

The following procedure is proposed without verification. Determine the

combined total length of all files in the search except the longest one,

and regard this number as an approximation to M1. Then allocate a region

size equal to Mi = KIM (i=1,2,...), where i is determined by other factors

such as the number of searches to be multiplexed, the desired response

time, etc.

4.2.4 Other Parameters

Three other factors considered in this study which might influence

system performance have all been found to be of minor significance. The

effects of varying the overlap between postings files and of changing the

3
A new algorithm which suppresses this activity has been tested with
promising results. See section 4.4.

88

total processing time for the coordination of two files are considered in

this section. Changes in the memory threshold are examined under Al-

gorithmic Studies in section 4.4. In some cases these discussions are

limited to the small parallel system when experimental results have shown

that the effect of a given perturbation is more pronounced in the small

system than in the large one.

4.2.4.1 Overlap

Overlap is a measure of the extent to which different terms

index the same documents. In general, increasing the overlap factor de-

creases the effective size of the data base. This is clearly shown in

Figure 4.5, which presents long search performance curves for overlap

factors of 0, 10% and 20%. For both large and small memories, processing

time varies inversely with the overlap factor; between these extremes,

the critical points tend to move toward smaller memories as the overlap

factor increases.

4.2.4.2 Buffering Delay

It was shown in Chapter 2 that certain memory constraints can

be relaxed if buffers are installed at the input and output of the special

purpose hardware. The proposed change would increase the processing time

for two lists from £
1
+ £2 + 1 to t

1
+

2
+ 3 cycles, where lists 1 and 2

contain £1 and £2 n-word sublists, respectively. Table 4.6 presents per-

formance data for both the small and large systems with processing times

of £1 + £2 + 1 cycles and a conservative £1 + 12 + 5 cycles. For this

small variation, neither system is consistently faster, and the average

BEST COPY AVAILABLE

1000

900

800

700

600

500

400

300

200

100

89

LIST OVERLAP EFFECTS

SEARCH: ONE 70-TERN "OR"
CONDITIONS: STANDARD, EXCEPT OVERLAP
OVERLAP:

o) 0%
0-0 b) 10%

C) 20%

oat

20%
16 PATHS

4

10K 20K 30K 40K 50K 60K 70K 80K

MEMORY SIZE
(WORDS; K =1024)

Figure 4.5. Overlap Factor Variations

M
e
m
o
r
y

S
i
z
e

(
w
o
r
d
s
)

"
S
m
a
l
l
"

P
a
r
a
l
l
e
l

S
y
s
t
e
m

T
i
m
e

2
.
1
+
2
2
+
5

c
y
c
l
e
s

"
L
a
r
g
e
"

P
a
r
a
l
l
e
l

S
y
s
t
e
m

T
i
m
e

l
e
t
2
+
5

c
y
c
l
e
s

P
r
o
c
e
s
s
i
n
g

2
,
4
1
2
+
1

c
y
c
l
e
s

%

C
h
a
n
g
e

P
r
o
c
e
s
s
i
n
g

+
1
2
+
1

c
y
c
l
e
s

%

C
h
a
n
g
e

4
K

8
3
3

0
9
m
s

8
4
6

3
8
m
s

+
1
.
6

%

3
5
7

9
3
m
s

3
5
3

7
6
m
s

-
1
.
2

%

8
K

5
5
9
.
2
2

5
6
4
.
9
9

+
1
.
0

2
1
5
.
5
9

2
1
2
.
7
9

-
1
.
3

1
6
K

4
2
6
.
9
1

4
1
5
.
2
9

-
2
.
7

1
3
5
.
6
1

1
3
5
.
0
8

-
0
.
3
9

3
2
K

4
1
0
.
5
5

4
1
2
.
8
8

+
0
.
5
7

9
4
.
2
1

9
5
.
8
9

+
1
.
8

4
0
K

4
4
2
.
5
8

4
4
4
.
5
8

+
0
.
4
5

9
5
.
0
0

9
3
.
2
2

-
1
.
9

5
0
K

3
0
2
.
9
3

3
1
1
.
2
3

+
2
.
7

6
9
.
9
2

7
0
.
2
8

'
7

+
0
.
5
1

6
4
K

3
0
0
.
8
8

3
0
1
.
8
2

1

+
0
.
3
1

6
8
.
1
0

7
1
.
7
5

_
+
5
.
4

T
a
b
l
e

4
.
6
.

V
a
r
i
a
t
i
o
n

o
f
P
r
o
c
e
s
s
i
n
g

C
y
c
l
e

L
e
n
g
t
h

0

91

processing times differ by less than one-half rotation in every case except

one.

4.3 Multiprogrammed Results

It is only possible at the present time to give an indication of

the new system's capabilities for handling multiple simultaneous searches.

In this situation the numher of parameters and combinations of parameters

which might be considered increases tremendously over the monoprogrammed

case, and so does the cost of simulation. This discuss n, therefore, may

be regarded only as a point of departure.

Two important parameters--average response time as seen by the

user and average elapsed time per search as seen by the system--and a

simple model for performance evaluation will be considered. Average re-

sponse time is defined to be the average time required to process a par-

ticular search request, and is closely related to user satisfaction.

Average search time is simply the total time required to process a batch

of n searches, divided by n, without regard for the completion times of

individual searches. It is a measure of system throughput. To see the

difference between average response and average search time, consider two

searches processed concurrently beginning at time t=0 and ending at t=4

units and t=5 units, respectively. The average response time is 4.5 units,

but the average search time is only 2.5 units. In applying these defi-

nitions in the present analysis, no allowance is made for time spent in

preliminary processing (parsing and index file access) or for waiting time

spent in various queues, which may be considerable. The object here is to

examine those time requirements that are related directly to the use of the

hardware coordination system.

92

Figure 4.6 presents a pair of hypothetical curves for response

and search time as functions of the number of searches processed. Also

shown are two broker lines: one is the constant value tuti, the average

time required to process a single search by itself, and the other is the

t
1

function t
r 2= --(n+1), which represents the average response time that

would be experienced by n users if their requests were submitted simul-

taneously and processed individually in sequence, each with processing

time t
1.

As long as the average search time for a group of searches is

less than t1, throughput can be increased by multiprogramming. The best

performance, system-wise, occurs at the minimum on the search time curve.

As long as the multiprogrammed response curve lies below the line tr,

users will experience improved performance over a monoprogrammed system

with a comparable work load.

The somewhat limited test results which are available are shown

in Figure 4.7. All tests were conducted with a 16-path system and ap-

proximately 64K words of memory (exceptions are noted below). Essentially

similar results have been obtained for a 256-path system except that the

times are shorter for tests involving the long search.

Part (a) of Figure 4.7 shows average search and response times

for batches of from one to ten short searches. Over this range of work

loads, the average response time rises only from 34.19ms for a single

search to 71.77ms (three disk rotations) for a group of ten. This is well

below the monoprogrammed reference curve. At the same time, the average

search time drops from 34.19ms to 12.54ms and is still falling at the ten-

search level, indicating that the most cffioicit operational load has not

BEST COPY AVAILABLE

9t,

8t,

?t, -

6t,

5t,

4t,

3 t,

2t,

t, Iwo No

0?

RESPONSE

NUMBER OF SIMULTANEOUS SEARCHES (n)

Figure 4.6. Average Search and Response Time Presentation

w

A
V

E
R

A
G

E
32

00
R

E
S

P
O

N
S

E

10
00

so
o

W 0=

/
/
/

g
i

G
O

O
-

//
si

s
/

.0
'

aso
/

g
/

.
.
.
.

A
V

E
R

A
G

E
#

A
V

E
R

A
G

E
87

: 4
00

-
/

#
S

E
A

R
C

H
#

R
E

S
P

O
N

S
E

A
V

E
R

A
G

E
--

-
S

E
A

R
C

H

2
4

6
5

10
N

U
M

B
E

R
 O

F
 S

IM
U

LT
A

N
E

O
U

S
S

E
A

R
C

H
E

S

(
a
)

P
a
r
a
l
l
e
l

S
h
o
r
t

S
e
a
r
c
h
e
s

11
11

11
11

11
0

41
=

00
 1

11
.1

11
.

ol
l 0

11
11

1,

a a. id

40
0

30
0

20
0

. 0
0

al
lm

 4
1

./M
O

0.
0

O
M

. 4
10

. =
11

/

(S
N

O
R

T
S

E
A

R
C

H
E

S
)

20
0

-
10

0
A

V
E

R
A

G
E

S
E

A
R

C
H

(S
N

O
R

T
S

E
A

R
C

H
E

S
)

0
-4

1-
--

46
--

--
-7

6
6

3D
N

U
M

B
E

R
 O

F
 S

IM
U

LT
A

N
E

O
U

S
N

U
M

B
E

R
 O

F
 S

IM
U

LT
A

N
E

O
U

S
S

E
A

R
C

H
E

S
S

H
O

R
T

 S
E

A
R

C
H

E
S

(
b
)

P
a
r
a
l
l
e
l

L
o
n
g

S
e
a
r
c
h
e
s

(
c
)

P
a
r
a
l
l
e
l

S
h
o
r
t

S
e
a
r
c
h
e
s

w
i
t
h

O
n
e

L
o
n
g

S
e
a
r
c
h

F
i
g
u
r
e

4
.
7
.

M
u
l
t
i
p
r
o
g
r
a
m
m
e
d

R
e
s
u
l
t
s

95

yet been reached.

Part (b) presents the corresponding results for loads of from

one to four parallel long searches. In'this case multiprogramming appears

to be detrimental since both the average search and average response time

curves lie above the corresponding curves for a monoprogrammed system.

For tests reported in Figure 4.7(b), each search was assigned a

fixed memory partition before the start of processing. This memory

allocation procedure was found to be superior to the system used for all

other tests in which the several searches compete for available core on a

dynamic basis. Partitions used are for one search, 52K; two searches,

40K; three searches, 24K; and four searches, 16K. Attempts to employ

critically-sized regions as discussed in section 4.2.3 produced in-

conclusive results in which performance was sometimes improved by the

use of critical region sizes and sometimes not.

Part (c) of the figure presents results for a mixed job load

containing one long search and a number of short ones. This is likely to

be a very common situation for an operational system. In this case, the

monoprogrammed average response curve is assumed to have the same slope

as in part (a) for parallel short searches alone. The important point is

that the response and search time curves behave in much the same way in

the presence of a long search as they do without one. Specifically,

average response time increases by about thirty ms as the number of short

searches increases from one to eight; and the average time per short

search drops consistently throughout this range, indicating that more

short searches could be included without serious adverse effects.

Further testing is required to develop a clear picture of system

96

behavior when processing multiple searches in parallel. Results presented

in this section do, however, indicate the level of performance which can

be achieved.

4.4 Algorithmic Development

Up to the present time, algorithmic development and refinement

have been performed on an empirical basis. No claim is made to an optimal

solution; however, certain experimental observations are worthy of note.

In general, procedures have been avoided which would be difficult to imple-

ment or time-consuming to execute in an operational system.

The general problem is to merge N ordered lists of various lengths

located initially at random positions on one or more disk drives. The

available memory may or may not be adequate to contain all the data ele-

ments to be processed, but in general it is not.

In the initial experiments, all lists were processed strictly in

their order of occurrence. When the memory became full its contents were

combined with the next available list and the result was left on disk. For

large problems, this procedure eventually resulted in a need to process a

number of intermediate results, each too large to fit in core, located ran-

domly on the disk. This proved to be a time-consuming job, and better per-

formance was achieved when a single list (the longest) was reserved from

the start for collecting intermediate results.4 Curve A in Figure 4.8 was

produced using this procedure.

4
Cases have been observed in which performance is improved if the collector
list is not chosen until it is needed, i.e., if the longest file is treated
like any other until after the memory has been filled once, and the longest
remaining list is chosen as a collector. However, this procedure has no
clear-cut advantage over reserving the longest list from the start; and the
latter is easier to implement.

1

BEST COPY AVAILABLE

1000

900

800

700

600

500

400

300

200

100

97

ALGORITHM DEVELOPMENT

i6 PATHS

i

10K 20K 30K 40K 50K 60K 70K

MEMORY SIZE
(WORDS; K =1024)

Figure 4.8. Algorithm Development

98

Curve A exhibits a large "hump" in the range of memory sizes be-

tween 16K and 50K words. In this operating region, it was found to be a

very common occurrence for the memory to fill within .a few blocks of its

capacity and for the system to split a list in order to fill 'that small

space. A long merge would follow and, because of the assumed overlap

betveen the two lists, a few blocks of core would again become available

at its completion. The whole process would then be repeated. Eventually

the result would grow long enough to fill the memory completely, but mean-

while a great many opportunities for more useful work would be missed. To

correct this problem, list-splitting was suppressed whenever the amount of

free memory dropped below some threshold level, t. Curve B is the result

for t=10%.
11.

System performance was found to be fatrly-insensitive to the

exact value of t above some low level. Curves for t=5, 10 and 20% all lie

close together at most points tested. As one might expect, critical points

show a tendency to shift towards large memories as t increases, indicating

a reduction in the effective memory size of any given configuration.

In the next refinement, two additional activities were keyed to

the level of memory usage. First, all reading of new data was suppressed

when free core dropped below the threshold. More important, collector list-

processing was permitted only when less than t% of the total memory was free.

In this way a number of unnecessary, long merge procedures were eliminated

and earlier access was permitted to short lists located at the same rotational

position as the collector list. These improvements yielded Curve C of

Figure 4.8, and this procedure has been used to generate all test results

discussed elsewhere in this report.

99

Examination of the merge trees, or patterns of list combinations

produced by Algorithm C reveals that, as the memory fills, the level of

memory occupancy oscillates back and forth about the threshold, with the

result that inefficient merges involving one very long and one very short

list still occur frequently enough to degrade performance.

Recently (too recently for extensive use in this report), tests

have been conducted using a new algorithm in which, essentially, no fur-

ther reading is permitted after the memory fills beyond the threshold

level.
5

Instead, all pending work on files in core is completed and the

sink list is processed at the earliest opportunity. This algorithm was

used to generate Curve 0 in the figure. Curve 0 lies below all other

curves at all points tested and yields a particular improvement in the

middle range of memory sizes. It does not, however, completely eliminate

the local maximum at 40K which results from inefficient handling of long

lists in memory sizes between the critical values M2 and N1, defined in

section 4.2.3.

In view of the successful tests with Algorithm 0, it now appears

that the threshold system might be abandoned entirely in favor of a pro-

cedure which fills the available memory completely and then allows the work

in progress to be completed and the memory emptied before accepting any new

inputs. Other possibilities are also being considered.

5
The precise procedure tested is that reading is suppressed after either a)
the memory fills completely, or b) an opportunity to split a list is re-
jected because less than 10% of the memory is free.

100

4.5 Merge Activity

Records of merge and coordination hardware utilization have

proved less interesting than expected, although they do support some of the

analysis presented earlier. Figure 4.9 shows merge time as a function of

memory size for the collection of basic test runs presented in Figure 4.1.

For small systems (1 (not shown), 16 and 32 paths), the merge

time curves have nearly the same shape as those for total elapsed time. In

particular, they exhibit a local maximum near 40K which, as discussed pre-

viously, results frt inefficient merge scheduling as the memory becomes

nearly full. When the memory becomes large enough to hold all files of

interest, this inefficiency disappears, and the merge time drops to it-

overall minimum value.

For larger systems (64 or more paral'el data paths) the phe-

nomenon above becomes much less pronounced in the total elapsed time curves,

and ft Disappears altogether from tne merge time records. In fact, for

systems with 128 and 256 paths, the merge time shows a definite increase

around 50K (where total elapsed time decreases suddenly). Merge time for

the largest system tested (512 paths) increases almost linearly with

memory size above 8K while the total elapsed time decreases steadily.

Thus, the efficiency of network utilization drops steadily as the overall

performance of the system improves.

The explanation for this may be found by considering the nature

of these large systems and examining the oetailed progress of a search.

In these configurations a great many data items are transmitted simul-

taneously from disk with the result that any given postings file occupies

a much smaller angular region than would otherwise be the case, and the

BEST COPY AVAILABLE

600

500

400

300

200

i00

101

SEARCH: ONE 70TERM "OR"

CONDITIONS: STANDARD

i6 PATHS

32 PATHS

o 64 PATHS
*1.28 PATHS

2
PATHS

56 AS
1512 PH

10K 20K 30K 40K 50K 60K 70K

MEMORY SIZE
(WORDS; K=1024)

Figure 4.9. Merge and Coordination Hardware Utilization

102

disk appears to be less densely populated. Furthermore, because the hard-

ware coordination system also processes more data on each cycle, a given

merge is completed more rapidly. These two factors combine to prevent the

accumulation of unprocessed lists in core so that instead of forming small

intermediate results, new lists tend to be merged directly into a single,

large, constantly expanding, combined list. This kind of process has

already been identified as a source of inefficiency in discussing the

behavior of the total elapsed time for a search as a function of memory.

size.

It may be possible to improve the efficiency of hardware uti-

lization by waiting until several lists are available in core before doing

any processing. However, the price of such an improvement may well be an

increase in the total time required to complete the task.

103

5. CONCLUSION

A specialized processor for performing postings file access and

coordination functions in inverted file retrieval systems has been pre-

sented. Design studies and simulation experiments indicate that the pro-

posed system can be built using current technology and that it can process

a complicated search in a large data base from 12 to 60 times faster than

a large conventional computer. The speed-up is not as great for a short

search involving only a few terms, but ten or more such searches can be

processed concurrently with very little effect upon the system. In this

way, the average elapsed time per search can be reduced drastically.

Application of the new system need not be restricted to infor-

mation retrieval. It can be employed for any merging application, and in

many cases it can be simplified considerably by the elimination of the co-

ordination network.

While an exhaustive analysis of development costs is beyond the

scope of this report, a fairly realistic estimate of component costs can be

given since the subsystem designs presented in Chapter 2 are based on "off-

the shelf" devices. Because semiconductor prices have been declining sharply

in recent years, these figures si;ould be regarded as conservative.

Table 5.1 lists several components and shows the number of units

required and their approximate cost for the 16- and 256-path parallel sys-

tems. Hardware for a small system, excluding the control unit and the disk

but including a 16K word x 32-bit 100ns memory, is estimated at about

$50,000; a large unit would cost around $200,000. Addition of a control unit

should not affect these numbers significantly.

C
o
m
p
o
n
e
n
t

1
6
-
P
a
t
h
s

2
5
6
-
P
a
t
h
s

N
u
m
b
e
r

R
e
q
u
i
r
e
d

v
o
w
-
0
K

C
o
s
t

N
u
m
b
e
r

R
e
q
u
i
r
e
d

C
o
s
t

G
a
t
e
s

9
5
0

$
3
6
0

2
8
,
0
0
0

$

1
0
,
5
5
0

L
a
t
c
h
e
s

1
5
0

3
0
0

4
,
3
5
0

9
,
0
0
0

F
l
i
p
-
F
l
o
p
s

3
2

8
0

4
5
1
2

1
,
3
3
0

*

S
h
i
f
t

R
e
g
i
s
t
e
r
s

8
0

8
,
6
5
0

1
,
2
8
0

1
4
0
,
0
0
0

*
*
M
e
m
o
r
y

1
3
9
,
6
0
0

1
3
9
,
6
0
0

T
o
t
a
l

$
4
8
,
9
9
0

$
2
0
0
,
4
8
0

*
3
2

b
i
t
s

*
*
1
6
K

w
o
r
d
s

x

3
2

b
i
t
s
,

1
0
0
n
s

c
y
c
l
e

T
a
b
l
e

5
.
1
.

C
o
m
p
o
n
e
n
t

C
o
s
t

E
s
t
i
m
a
t
e
s

105

The Illiac IV head-per-track disk with a capacity of 109 bits and

with the other capabilities assumed in this study cost approximately

$500,000.

Mass storage alternatives under consideration include the vari-

ous shift register technologies and the use of a moving head disk modified

for parallel transmission from several tracks. If this last alternative

proves attractive, a system containing a controller and eight drives com-

parable to the IBM 2314 could be obtained for about $70,000. .

In summary, it appears that the hardware for a 16-path parallel

retrieval system could be built for about $100K--$150K. A 256-path system

would cost in the neighborhood of $1M.

Much remains to be done in the area of algorithm optimization

and in the development of a theoretical basis for describing the perfor-

mance of the system. Several unexpected phenomena have been observed in

connection with the interaction between the disk and the hardware system,

and a rigorous explanation for these is not yet available. Nevertheless,

the system performs well and exhibits promise for extending the capa-

bilities of inverted file retrieval systems.

106

LIST. OF REFERENCES

[1] "Putting Law Libraries into Computers," Business Week, p. 36;

January 26, 1974.

[2] Mead Data Central, Inc., Lexis, A Computer Based Legal Research

Service (Undated Brochure).

[3] D. B. McCarn and J. Leiter, "On-Line Service in Medicine and

Beyond," Science, pp. 318-324; July 27, 1973.

[4] W. R. Nugent, "The U. S. Patent Office Data Base: A Full Text

Communications Format for Computer-Aided Classification,

Retrieval and Examination of Patents," ASIS Proceedings,

Vol. 8, pp. 179-184; 1971.

[5] K. E. Batcher, "Sorting Networks and Their Applications," Spring

Joint Computer Conference, pp. 307-314; 1968.

[6] K. E. Batcher, "A New Internal Sorting Method," Goodyear Aero-

space Corporation Report No. GER-11759; September 1964.

[7] K. E. Batcher, "Minimum-Time Merging Networks," Goodyear Aero-

space Corporation Report No. GER-14122; December 1968.

[8] Motorola Semiconductor Products, Inc., MECL Integrated Circuits

Data Book, Third Edition; 1973.

[9] Intel Data Catalog, Intel Corporation, Santa Clara, California;

February 1973.

[10] Illiac IV Systems Characteristics and Programming Manual, 1L4 -PM1,

Revision 4, Change 1; June 1970.

107

[11] G. H. Barnes, R. M. Brown, M. Kato, D. J. Kuck, D. L. Slotnick

and T.. A. Stokes, "The.Illiac IV Computer," IEEE Trans-

actions on Computers, Vol. C-17, No. 8, pp.. 7.46 -757;

August 1968.

[12] D. E. McIntyre, "An Introduction to the Illiac IV Computer,"

Datamation, Vol. 16, No. 4, pp. 60-67; April 1970.

[13] D. Huffman, "A Method for the Construction of Minimum-Redundancy

Codes," Proceedings of the IRE, pp. 1098-1101; September

1952.

[14] D. E. Knuth, The Art of Computer Programming, Vol. 3, Addison-

Wesley, pp. 362-371; 1973.

[15] National Library of Medicine, Master MESH; November 1972.

108

VITA.

William Howard Stellhorn was born in Fort Wayne, Indiana, in

1943. He received the B.S.E.E. and M.S.E.E. degrees from Purdue Uni-

versity in 1965 and 1966, respectively. His research activity at Purdue

dealt with computer-aided analysis and synthesis of nonlinear networks.

From 1967 to 1970 Mr. Stellhorn was employed as an Aerosystems Engineer

with the General Dynamics Corporation in Fort Worth, Texas, where he

developed and extended models for aircraft penetration studies. Since

entering the University of Illinois in 1970, he has held a Research As-

sistantship in the Department of Computer Science. He is a member of the

Association for Computing Machinery, the Institute of Electrical and

Electronics Engineers, and Tau Beta Pi and an associate member of Sigma Xi.

BEST COPY AVAILABLE

BIBLIOGRAPHIC DATA
SHEET

1. Report No.

12.UIUCDCS-R-74-637
3. Recipient's Accession No.

4. Title and Subtitle

A SPECIALIZED COMPUTER FOR INFORMATION RETRIEVAL

i. Report Date
October

6.

7. Author(s)
William Howard Stellhorn

8. Performing Organization Rept.
No. UIUCDCS-R-74-637

9. Performing Organization Name and Address
University of Illinois at Urbana-Champaign
Department of Computer Science
Urbana, Illinois 61801

10. Projec /Task/Work Unit No.

11.. Contract/Grant No.

US NSF GJ-36936

12, Sponsoring Organization Name and Address

National Science Foundation
Washington, D. C.

13. Type of Report 81 Period
Coverer

Doctoral - 1974

14.

15. Supplementary Notes

16. Abstracts
Response time in large, inverted file document retrieval systems is deter-

mined primarily by the time required to access files of document identifiers on disk
and perform the processing associated with a Boolean search request. This paper
describes a specialized computer system capable of performing these functions in
hardware. Using this equipment, a complicated sample search involving 70 terms and
over 60,000 document references can be performed from 12 to 60 times faster than with

a conventional machine, and many small searches can be processed concurrently with

very little effect upon system performance.

A detailed description of the system, which can be realized with currently-
available technology, is presented; and algorithms for controlling the progress of a
search are discussed. Results from numerous simulations involving various system
configurations and other factors are also reported.

17. Key Words and Document Analysis. 17a. Descriptors

Information Retrieval
Inverted Files
Parallel Processing
Merging
Computer Systems

lib. Identifiers. Open-Ended Terms

17e. I OSA TI Field/Group

18. A% atlability Statement

RELEASE UNLIMITED

19. Security Class
port)Re
'lirLow

(This

Igp
(This

ED

21. No. of Pages
115

22. Price20. Security Class
Pa

UNCLASSIFIED
FORM N T15- 35 110.70)

116
WIC OPAPA- 0 C 40342-P71

